Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Pharmacol Rev ; 75(2): 380-396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36781218

RESUMO

Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Proteína HMGB1 , Consumo de Álcool por Menores , Adolescente , Animais , Humanos , Ratos , Consumo de Bebidas Alcoólicas , Alcoolismo/tratamento farmacológico , Alcoolismo/genética , Alcoolismo/patologia , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/patologia , Epigênese Genética , Etanol/efeitos adversos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo
2.
Mol Psychiatry ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402853

RESUMO

Adolescent binge drinking increases Toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), the endogenous TLR4/RAGE agonist high-mobility group box 1 (HMGB1), and proinflammatory neuroimmune signaling in the adult basal forebrain in association with persistent reductions of basal forebrain cholinergic neurons (BFCNs). In vivo preclinical adolescent intermittent ethanol (AIE) studies find anti-inflammatory interventions post-AIE reverse HMGB1-TLR4/RAGE neuroimmune signaling and loss of BFCNs in adulthood, suggesting proinflammatory signaling causes epigenetic repression of the cholinergic neuron phenotype. Reversible loss of BFCN phenotype in vivo is linked to increased repressive histone 3 lysine 9 dimethylation (H3K9me2) occupancy at cholinergic gene promoters, and HMGB1-TLR4/RAGE proinflammatory signaling is linked to epigenetic repression of the cholinergic phenotype. Using an ex vivo basal forebrain slice culture (FSC) model, we report EtOH recapitulates the in vivo AIE-induced loss of ChAT+IR BFCNs, somal shrinkage of the remaining ChAT+ neurons, and reduction of BFCN phenotype genes. Targeted inhibition of EtOH-induced proinflammatory HMGB1 blocked ChAT+IR loss while disulfide HMBG1-TLR4 and fully reduced HMGB1-RAGE signaling decreased ChAT+IR BFCNs. EtOH increased expression of the transcriptional repressor RE1-silencing transcription factor (REST) and the H3K9 methyltransferase G9a that was accompanied by increased repressive H3K9me2 and REST occupancy at promoter regions of the BFCN phenotype genes Chat and Trka as well as the lineage transcription factor Lhx8. REST expression was similarly increased in the post-mortem human basal forebrain of individuals with alcohol use disorder, which is negatively correlated with ChAT expression. Administration of REST siRNA and the G9a inhibitor UNC0642 blocked and reversed the EtOH-induced loss of ChAT+IR BFCNs, directly linking REST-G9a transcriptional repression to suppression of the cholinergic neuron phenotype. These data suggest that EtOH induces a novel neuroplastic process involving neuroimmune signaling and transcriptional epigenetic gene repression resulting in the reversible suppression of the cholinergic neuron phenotype.

3.
Addict Biol ; 28(1): e13262, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577732

RESUMO

Many disorders of the central nervous system (CNS), including alcohol use disorder (AUD), are associated with induction of proinflammatory neuroimmune signalling and neurodegeneration. In previous studies, we found increased expression of Toll-like receptors (TLRs), activated NF-κB p65 (RELA), and other proinflammatory signalling molecules. Proinflammatory NADPH oxidases generate reactive oxygen species, which are linked to neurodegeneration. We tested the hypothesis that AUD increased RELA activation increases NADPH oxidase-oxidative stress and endoplasmic reticulum (ER) stress cell death cascades in association with neuronal cell death in the human orbitofrontal cortex (OFC). In the AUD OFC, we report mRNA induction of several NADPH oxidases, the dual oxidase DUOX2, and the oxidative stress lipid peroxidation marker 4-HNE and the DNA oxidation marker 8-OHdG that correlate with RELA, a marker of proinflammatory NF-κB activation. This was accompanied by increased expression of the ER stress-associated regulator protein glucose-regulated protein 78 (GRP78), transmembrane sensors activating transcription factor 6 (ATF6), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and inositol-requiring kinase/endonuclease 1 (pIRE1), and the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Expression of NADPH oxidase-oxidative stress markers correlate with ER stress-associated molecules. Induction of oxidative stress and ER stress signalling pathways correlate with expression of cell death-associated caspases and neuronal cell loss. These data support the hypothesis that proinflammatory RELA-mediated induction of NADPH oxidase-oxidative stress and ER stress-associated signalling cascades is associated with neuronal cell death in the post-mortem human OFC of individuals with AUD.


Assuntos
Alcoolismo , NADPH Oxidases , Humanos , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Apoptose , Estresse do Retículo Endoplasmático/fisiologia , Córtex Pré-Frontal/metabolismo
4.
Mol Psychiatry ; 26(6): 2254-2262, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139808

RESUMO

The relationship between increased neuroimmune gene expression and hippocampal degeneration in alcohol use disorder (AUD) and other mental diseases is poorly understood. We report here that tumor necrosis factor receptor superfamily death receptor 3 (TNFRSF25, DR3) and Fas receptors (Fas) that initiate caspase cell death cascades are increased in AUD hippocampus and following a rat adolescent binge drinking model. Death receptors are known inducers of apoptosis and cell death that recruit death domain (DD) proteins FADD and TRADD and caspases to form death-inducing signaling complexes (DISC). In postmortem human AUD hippocampus, mRNA and IHC protein are increased for the entire death receptor cascade. In AUD hippocampus, ligand-death receptor pairs, i.e., TL1A-DR3 and FasL-Fas, were increased, as well as FADD and TRADD, and active caspase-8, -7, -9, and caspase-3. Further, pNFκB p65, a key neuroimmune transcription factor, and IL-8, a chemokine, were significantly increased. Interestingly, across AUD patients, increases in DR3 and Fas correlated with TRADD, and TRADD with active caspase+IR and IL-8+IR, consistent with coordinated activation of neuronal DISC mediated death cascades and neuroimmune gene induction in AUD. These findings support a role for DR3 and Fas neuroimmune signaling in AUD hippocampal neurodegeneration.


Assuntos
Alcoolismo , Caspases , Animais , Caspases/metabolismo , Morte Celular , Hipocampo/metabolismo , Humanos , Interleucina-8 , Ratos , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
5.
Alcohol Clin Exp Res ; 46(5): 759-769, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307830

RESUMO

BACKGROUND: Binge alcohol exposure during adolescence results in long-lasting alterations in the brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long-term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) that surround some interneurons, particularly PV+ interneurons, further regulate cellular plasticity. The effect of AIE exposure on the expression of these markers within the PFC is not well understood. METHODS: The present study tested the hypothesis that AIE exposure reduces the expression of PV+ and choline acetyltransferase (ChAT)+ interneurons in the adult PFC and striatum and increases the related expression of PNNs (marked by binding of Wisteria floribunda agglutinin lectin) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2-days-on/2-days-off, i.e., P25 to P54) or water (CON), and brain tissue was harvested in adulthood (>P80). Immunohistochemistry and co-immunofluorescence were used to assess the expression of ChAT, PV, and PNNs within the adult PFC and striatum following AIE exposure. RESULTS: ChAT and PV interneuron densities in the striatum and PFC were unchanged after AIE exposure. However, PNN density in the PFC of AIE-exposed rats was greater than in CON rats. Moreover, significantly more PV neurons were surrounded by PNNs in AIE-exposed subjects than controls in both PFC subregions assessed: orbitofrontal cortex (CON = 34%; AIE = 40%) and medial PFC (CON = 10%; AIE = 14%). CONCLUSIONS: These findings indicate that, following AIE exposure, PV interneuron expression in the adult PFC and striatum is unaltered, while PNNs surrounding these neurons are increased. This increase in PNNs may restrict the plasticity of the ensheathed neurons, thereby contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.


Assuntos
Etanol , Interneurônios , Adolescente , Adulto , Animais , Etanol/metabolismo , Matriz Extracelular/metabolismo , Humanos , Interneurônios/metabolismo , Masculino , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos
6.
Addict Biol ; 27(3): e13176, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470561

RESUMO

There is growing evidence that immune signalling may be involved in both the causes and consequences of alcohol abuse. Toll-like receptor (TLR) expression is increased by alcohol consumption and is implicated in AUD, and specifically TLR7 may play an important role in ethanol consumption. We administered the TLR7-specific agonist imiquimod in male and female Long-Evans rats to determine (1) gene expression changes in brain regions involved in alcohol reinforcement, the nucleus accumbens core and anterior insular cortex, in rats with and without an alcohol history, and (2) whether TLR7 activation could modulate operant alcohol self-administration. Interferon regulatory factor 7 (IRF7) was dramatically increased in both sexes at both 2- and 24-h post-injection regardless of alcohol history and TLR3 and 7 gene expression was increased as well. The proinflammatory cytokine TNFα was increased 24-h post-injection in rats with an alcohol self-administration history, but this effect did not persist after four injections, suggesting molecular tolerance. Ethanol consumption was increased 24 h after imiquimod injections but did not occur until the third injection, suggesting adaptation to repeated TLR7 activation is necessary for increased drinking to occur. Notably, imiquimod reliably induced weight loss, indicating that sickness behaviour persisted across repeated injections. These findings show that TLR7 activation can modulate alcohol drinking in an operant self-administration paradigm and suggest that TLR7 and IRF7 signalling pathways may be a viable druggable target for treatment of AUD.


Assuntos
Etanol , Receptor 7 Toll-Like , Animais , Condicionamento Operante , Etanol/farmacologia , Feminino , Imiquimode/farmacologia , Masculino , Ratos , Ratos Long-Evans , Receptores Toll-Like
7.
Neuroimage ; 243: 118541, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478824

RESUMO

Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Animais , Mapeamento Encefálico/métodos , Análise por Conglomerados , Processamento de Imagem Assistida por Computador/métodos , Isoflurano , Masculino , Ratos , Reprodutibilidade dos Testes
8.
Alcohol Clin Exp Res ; 45(9): 1747-1761, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415075

RESUMO

BACKGROUND: Many brain disorders, including alcohol use disorder (AUD), are associated with induction of multiple proinflammatory genes. One aspect of proinflammatory signaling is progressive increases in expression across cells and induction of other innate immune genes. High-mobility group box 1 (HMGB1) heteromers contribute to amplification by potentiating multiple proinflammatory responses, including Toll-like receptors (TLRs). TLR signaling recruits coupling proteins linked to nuclear transcription factors that induce proinflammatory cytokines and chemokines and their respective receptors. We tested the hypothesis that AUD induction of TLR expression increases levels of proinflammatory genes and cellular signaling cascades in association with neurodegeneration in the orbitofrontal cortex (OFC). METHODS: Postmortem human OFC tissue samples (n = 10) from males diagnosed with AUD were compared to age-matched moderate drinking controls (CON). Neuroimmune signaling molecules were assessed using immunohistochemistry for protein and reverse transcription polymerase chain reaction for messenger RNA (mRNA). RESULTS: In the AUD OFC, we report induction of the endogenous TLR agonist HMGB1 as well as all TLRs assessed (i.e., TLR2-TLR9) except TLR1. This was accompanied by increased expression of the TLR adaptor protein myeloid differentiation primary response 88 (MyD88), activation of the proinflammatory nuclear transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and downstream induction of proinflammatory cytokines, chemokines, and their corresponding receptors. Several of these proinflammatory signaling markers are expressed in glia and neurons. The induction of HMGB1-TLR-MyD88-NFκB proinflammatory signaling pathways correlates with neurodegeneration (i.e., Fluoro-Jade B), lifetime alcohol consumption, and age of drinking onset. CONCLUSION: These data implicate the induction of HMGB1-TLR-MyD88-NFκB cascades through coordinated glial and neuronal signaling as contributors to the neurodegeneration seen in the postmortem human OFC of individuals with AUD.


Assuntos
Alcoolismo/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Adulto , Idade de Início , Quimiocinas/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Neurônios/metabolismo , Adulto Jovem
9.
Addict Biol ; 26(1): e12869, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880056

RESUMO

Human alcoholism and ethanol exposure of adult mice cause acute microbial dysbiosis. Adolescent binge drinking is common, but the effect of adolescent ethanol exposure on the adult microbiome and enteric neurotransmitters has not been studied. In the current study, male Wistar rats received adolescent intermittent ethanol (AIE) treatment, and fecal samples were collected on postnatal day (P)54 and P95 for bacterial 16S rRNA amplicon sequencing. Cecal tissue was collected on P95 for analysis of innate immune and neurotransmitter marker expression. At the genus level, AIE treatment altered the relative abundance of several microbes, including decreased relative abundance of Dehalobacterium and CF231 (a member of the Paraprevotellaceae family) that persisted into adulthood. Across aging, the relative abundance of several microbes was altered in both control- and AIE-treated rats. At P95, AIE exposure was associated with increased cecal serotonin levels and reduced choline acetyltransferase gene expression. Taxonomic shifts at P54 and at P95 suggest that AIE causes both immediate and lasting microbial dysbiosis. The lasting microbial dysbiosis was accompanied by alterations of enteric neurotransmitters.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/microbiologia , Disbiose/microbiologia , Etanol/farmacologia , Alcoolismo/microbiologia , Animais , Masculino , Microbiota/efeitos dos fármacos , Neurotransmissores/metabolismo , RNA Ribossômico 16S , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806288

RESUMO

Although the cause of progressive neurodegeneration is often unclear, neuronal death can occur through several mechanisms. In conditions such as Alzheimer's or alcohol use disorder (AUD), Toll-like receptor (TLR) induction is observed with neurodegeneration. However, links between TLR activation and neurodegeneration are lacking. We report a role of apoptotic neuronal death in AUD through TLR7-mediated induction of death receptor signaling. In postmortem human cortex, a two-fold increase in apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in neurons was found in AUD versus controls. This occurred with the increased expression of TLR7 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors. Binge ethanol treatment in C57BL/6 mice increased TLR7 and induced neuronal apoptosis in cortical regions that was blocked by TLR7 antagonism. Mechanistic studies in primary organotypic brain slice culture (OBSC) found that the inhibition of TLR7 and its endogenous ligand let-7b blocked ethanol-induced neuronal cell death. Both IMQ and ethanol induced the expression of TRAIL and its death receptor. In addition, TRAIL-neutralizing monoclonal antibodies blocked both imiquimod (IMQ) and ethanol induced neuronal death. These findings implicate TRAIL as a mediator of neuronal apoptosis downstream of TLR7 activation. TLR7 and neuronal apoptosis are implicated in other neurodegenerative diseases, including Alzheimer's disease. Therefore, TRAIL may represent a therapeutic target to slow neurodegeneration in multiple diseases.


Assuntos
Alcoolismo/metabolismo , Alcoolismo/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto , Animais , Apoptose , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Caspase 3/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Modelos Neurológicos , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/metabolismo , Adulto Jovem
11.
Addict Biol ; 25(2): e12731, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30779268

RESUMO

Binge drinking and alcohol abuse are common during adolescence and cause lasting pathology. Preclinical rodent studies using the adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to P55) model of human adolescent binge drinking report decreased basal forebrain cholinergic (ie, ChAT+) neurons that persist into adulthood (ie, P56-P220). Recent studies link AIE-induced neuroimmune activation to cholinergic pathology, but the underlying molecular mechanisms contributing to the persistent loss of basal forebrain ChAT+ neurons are unknown. We report here that the AIE-induced loss of cholinergic neuron markers (ie, ChAT, TrkA, and p75NTR ), cholinergic neuron shrinkage, and increased expression of the neuroimmune marker pNF-κB p65 are restored by exercise exposure from P56 to P95 after AIE. Our data reveal that persistently reduced expression of cholinergic neuron markers following AIE is because of the loss of the cholinergic neuron phenotype most likely through an epigenetic mechanism involving DNA methylation and histone 3 lysine 9 dimethylation (H3K9me2). Adolescent intermittent ethanol caused a persistent increase in adult H3K9me2 and DNA methylation at promoter regions of Chat and H3K9me2 of Trka, which was restored by wheel running. Exercise also restored the AIE-induced reversal learning deficits on the Morris water maze. Together, these data suggest that AIE-induced adult neuroimmune signaling and cognitive deficits are linked to suppression of Chat and Trka gene expression through epigenetic mechanisms that can be restored by exercise. Exercise restoration of the persistent AIE-induced phenotypic loss of cholinergic neurons via epigenetic modifications is novel mechanism of neuroplasticity.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Neurônios Colinérgicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Etanol/farmacologia , Atividade Motora/fisiologia , Animais , Prosencéfalo Basal/fisiopatologia , Consumo Excessivo de Bebidas Alcoólicas/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Masculino , Ratos Wistar
12.
Alcohol Clin Exp Res ; 43(1): 48-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403408

RESUMO

BACKGROUND: Growing evidence suggests that neuroimmune signaling via Toll-like receptors (TLRs) alters brain circuitry related to alcohol use disorders. Both ethanol (EtOH) exposure and the TLR3 agonist, poly(I:C), increase brain TLR3 expression in neurons and glia. Furthermore, previous studies have shown that cortical TLR3 expression is correlated with lifetime EtOH intake in humans. METHODS: The current experiments investigated the consequences of poly(I:C) treatment on gene expression in 2 brain regions contributing to alcohol reinforcement, the insular cortex (IC) and nucleus accumbens (Acb) and on operant EtOH self-administration, in Long Evans rats. RESULTS: TLR3 activation increased mRNA levels of neuroimmune genes (TLR3, COX2), glutamatergic genes (mGluR2, mGluR3, GLT1), and the trophic factor BDNF in Acb and IC. Furthermore, increases in each of these genes were correlated with increases in TLR3 mRNA, suggesting that TLR3 induction of these genes may impact excitatory transmission in IC and Acb. TLR3 activation also increased EtOH self-administration 18 days postinjection and enhanced the effects of the mGluR2/3 agonist LY379268 to reduce EtOH self-administration following poly(I:C). CONCLUSIONS: Together, these findings suggest lasting consequences of TLR3 activation on gene expression including increases in Group II mGluRs in the Acb. Furthermore, we show an important role for TLR3 signaling in EtOH intake, and a functional involvement of Group II mGluRs.


Assuntos
Etanol/farmacologia , Expressão Gênica/efeitos dos fármacos , Receptor 3 Toll-Like/agonistas , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Córtex Cerebral/metabolismo , Condicionamento Operante/efeitos dos fármacos , Sinergismo Farmacológico , Etanol/antagonistas & inibidores , Masculino , Núcleo Accumbens/metabolismo , Poli I-C/farmacologia , Ratos , Autoadministração , Receptor 3 Toll-Like/biossíntese
13.
Alcohol Clin Exp Res ; 43(9): 1806-1822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335972

RESUMO

The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.


Assuntos
Comportamento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etanol/efeitos adversos , Consumo de Álcool por Menores , Animais , Humanos , Neuroimunomodulação/efeitos dos fármacos
14.
Pharmacol Rev ; 68(4): 1074-1109, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27677720

RESUMO

Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.

15.
Alcohol Clin Exp Res ; 42(4): 718-726, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417597

RESUMO

BACKGROUND: Chronic ethanol (EtOH) exposure has been found to inhibit adult hippocampal neurogenesis in multiple models of alcohol addiction. However, acute EtOH inhibition of adult neurogenesis is not well studied. Although many abused drugs have been found to inhibit adult neurogenesis, few have studied cannabinoids or cannabinoids with EtOH, although human use of both together is becoming more common. We used an acute binge alcohol drinking model in combination with select cannabinoid receptor agonists and antagonists to investigate the actions of each alone and together on hippocampal neurogenesis. METHODS: Adult male Wistar rats were treated with an acute binge dose of EtOH (5 g/kg, i.g.), cannabinoid 1 receptor (CB1R) or cannabinoid 2 receptor (CB2R) agonists, as well as selective cannabinoid (CB) antagonists, alone or combined. Hippocampal doublecortin (DCX), Ki67, and activated cleaved caspase-3 (CC3) immunohistochemistry were used to assess neurogenesis, neuroprogenitor proliferation, and cell death, respectively. RESULTS: We found that treatment with EtOH or the CB1R agonist, arachidonoyl-2'-chloroethylamide (ACEA), and the combination significantly reduced DCX-positive neurons (DCX + IR) in dentate gyrus (DG) and increased CC3. Further, using an inhibitor of endocannabinoid metabolism, for example, JZL195, we also found reduced DCX + IR neurogenesis. Treatment with 2 different CB1R antagonists (AM251 or SR141716) reversed both CB1R agonist and EtOH inhibition of adult neurogenesis. CB2R agonist HU-308 treatment did not produce any significant change in DCX + IR. Interestingly, neither EtOH nor CB1R agonist produced any alteration in cell proliferation in DG as measured by Ki67 + cell population, but CC3-positive cell numbers increased following EtOH or ACEA treatment suggesting an increase in cell death. CONCLUSIONS: Together, these findings suggest that acute CB1R cannabinoid receptor activation and binge EtOH treatment reduce neurogenesis through mechanisms involving CB1R.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Etanol/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Neurogênese/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Animais , Canabinoides/farmacologia , Carbamatos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Interações Medicamentosas , Endocanabinoides/farmacologia , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Rimonabanto/farmacologia
16.
Brain Behav Immun ; 60: 333-345, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27647531

RESUMO

Serotonergic neurons of the raphe nucleus regulate sleep, mood, endocrine function, and other processes that mature during adolescence. Alcohol abuse and binge drinking are common during human adolescence. We tested the novel hypothesis that adolescent intermittent ethanol exposure would alter the serotonergic system that would persist into adulthood. Using a Wistar rat model of adolescent intermittent ethanol (AIE; 5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to P55), we found a loss of dorsal raphe nucleus (DRN) serotonin (5-HT)-immunoreactive (+IR) neurons that persisted from late adolescence (P56) into adulthood (P220). Hypothalamic and amygdalar DRN serotonergic projections were reduced following AIE. Tryptophan hydroxylase 2, the rate-limiting 5-HT synthesizing enzyme, and vesicular monoamine transporter 2, which packages 5-HT into synaptic vesicles, were also reduced in the young adult midbrain following AIE treatment. Adolescent intermittent ethanol treatment increased expression of phosphorylated (activated) NF-κB p65 as well as markers of microglial activation (i.e., Iba-1 and CD11b) in the adult DRN. Administration of lipopolysaccharide to mimic AIE-induced innate immune activation reduced 5-HT+IR and increased phosphorylated NF-κB p65+IR similar to AIE treatment. Voluntary exercise during adolescence through young adulthood blunted microglial marker and phosphorylated NF-κB p65+IR, and prevented the AIE-induced loss of 5-HT+IR neurons in the DRN. Together, these novel data reveal that AIE reduces 5-HT+IR neurons in the adult DRN, possibly through an innate immune mechanism, which might impact adult cognition, arousal, or reward sensitivity. Further, exercise prevents the deleterious effects of AIE on the serotonergic system.


Assuntos
Etanol/farmacologia , Neurônios/metabolismo , Condicionamento Físico Animal , Serotonina/metabolismo , Alcoolismo/metabolismo , Animais , Feminino , Imuno-Histoquímica/métodos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Ratos Wistar , Ativação Transcricional/efeitos dos fármacos
17.
Alcohol Clin Exp Res ; 41(12): 2066-2081, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941277

RESUMO

BACKGROUND: Cycles of alcohol and stress are hypothesized to contribute to alcohol use disorders. How this occurs is poorly understood, although both alcohol and stress activate the neuroimmune system-the immune molecules and cells that interact with the nervous system. The effects of alcohol and stress on the neuroimmune system are mediated in part by peripheral signaling molecules. Alcohol and stress both enhance immunomodulatory molecules such as corticosterone and endotoxin to impact neuroimmune cells, such as microglia, and may subsequently impact neurons. In this study, we therefore examined the effects of acute and chronic ethanol (EtOH) on the corticosterone, endotoxin, and microglial and neuronal response to acute stress. METHODS: Male Wistar rats were treated intragastrically with acute EtOH and acutely stressed with restraint/water immersion. Another group of rats was treated intragastrically with chronic intermittent EtOH and acutely stressed following prolonged abstinence. Plasma corticosterone and endotoxin were measured, and immunohistochemical stains for the microglial marker CD11b and neuronal activation marker c-Fos were performed. RESULTS: Acute EtOH and acute stress interacted to increase plasma endotoxin and microglial CD11b, but not plasma corticosterone or neuronal c-Fos. Chronic EtOH caused a lasting sensitization of stress-induced plasma endotoxin, but not plasma corticosterone. Chronic EtOH also caused a lasting sensitization of stress-induced microglial CD11b, but not neuronal c-Fos. CONCLUSIONS: These results find acute EtOH combined with acute stress enhanced plasma endotoxin, as well as microglial CD11b in many brain regions. Chronic EtOH followed by acute stress also increased plasma endotoxin and microglial CD11b, suggesting a lasting sensitization to acute stress. Overall, these data suggest alcohol and stress interact to increase plasma endotoxin, resulting in enhanced microglial activation that could contribute to disease progression.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Etanol/farmacologia , Microglia/metabolismo , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Antígeno CD11b/metabolismo , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Corticosterona/sangue , Endotoxinas/sangue , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
18.
Addict Biol ; 22(3): 712-723, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26833865

RESUMO

Human studies have established that adolescence is a period of brain maturation that parallels the development of adult behaviors. However, little is known regarding cortical development in the adult rat brain. We used magnetic resonance imaging (MRI) and histology to assess the impact of age on adult Wistar rat cortical thickness on postnatal day (P)80 and P220 as well as the effect of adolescent binge ethanol exposure on adult (P80) cortical thickness. MRI revealed changes in cortical thickness between P80 and P220 that differ across cortical region. The adult P220 rat prefrontal cortex increased in thickness whereas cortical thinning occurred in both the cingulate and parietal cortices relative to young adult P80 rats. Histological analysis confirmed the age-related cortical thinning. In the second series of experiments, an animal model of adolescent intermittent ethanol (AIE; 5.0 g/kg, intragastrically, 20 percent ethanol w/v, 2 days on/2 days off from P25 to P55) was used to assess the effects of alcohol on cortical thickness in young adult (P80) rats. MRI revealed that AIE resulted in region-specific cortical changes. A small region within the prefrontal cortex was significantly thinner whereas medial cortical regions were significantly thicker in young adult (P80) AIE-treated rats. The observed increase in cortical thickness was confirmed by histology. Thus, the rat cerebral cortex continues to undergo cortical thickness changes into adulthood, and adolescent alcohol exposure alters the young adult cortex that could contribute to brain dysfunction in adulthood.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Etanol/toxicidade , Imageamento por Ressonância Magnética , Fatores Etários , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
19.
Addict Biol ; 21(4): 939-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25678360

RESUMO

Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Imagem de Tensor de Difusão/métodos , Etanol/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
20.
Adv Drug Alcohol Res ; 4: 12094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524847

RESUMO

Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA