Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Small ; 19(43): e2300972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376837

RESUMO

This work reveals the crucial role of zeolite acidity in the synthesis of zeolite-templated carbons (ZTCs). While textural and chemical properties appear to be independent from acidity at a given synthesis temperature, the spin concentration in hybrid materials appears to be strongly impacted by the zeolite acid site concentration. The electrical conductivity of the hybrids and resulting ZTCs are closely related to the spin concentration in the hybrid materials. The amount of zeolite acid sites hence fundamentally impacts the electrical conductivity of the samples that spans over a range of four magnitudes. Electrical conductivity reveals as key parameter to describe the quality of ZTCs.

2.
Faraday Discuss ; 243(0): 126-147, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37042263

RESUMO

Modulating the interaction between Mo nanoparticles and their support is an elegant approach to finely tune the structural, physico-chemical, redox and electronic properties of the active site. In this work, a series of molybdenum nitride catalysts supported on TiO2, and SBA-15 has been prepared and fully characterized. The results of characterization confirmed the high dispersion of Mo and the formation of small molybdenum nanoparticles in both the 10-Mo-N/SBA-15 and 10-Mo-N/TiO2 catalysts. In this context, we have shown that the catalytic activity of Mo species was strongly impacted by the nature of the catalytic support. Amongst the studied supports, SBA-15 was found to be the most appropriate for Mo dispersion. In comparison, when supported on a reducible oxide (TiO2), Mo species showed poor catalytic activity in both ammonia synthesis and decomposition and were prone to quick deactivation in the ammonia synthesis reaction. Evidence of charge transfer from the reducible support to the active phase, indicative of possible SMSI behaviour, has been observed by XPS and EPR. Differences in the oxidation states, redox behaviours, and electronic properties have been further studied by means of EPR, H2-TPR and H2-TPD.

3.
Molecules ; 28(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110727

RESUMO

Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.


Assuntos
Antioxidantes , Receptor de Morte Celular Programada 1 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Dimerização , Transdução de Sinais , Aldeídos
4.
Chemistry ; 28(14): e202104437, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35142402

RESUMO

A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (-H, -CH3 , -Cl, -Br, -(OH)2 , -NO2 , -NH2 , (-NH2 )2 , -CH2 NH2 ) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6 O4 (OH)4 } brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2 )2 ). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (-CH2 NH2 ) in UiO-67 (-128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2 ) species into anionic I- ones, stabilized as I- ⋅⋅⋅I2 or I3 - complexes within the MOF cavities, occurs when I2 @UiO-n samples are left in ambient light.

5.
Inorg Chem ; 61(39): 15346-15358, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36112884

RESUMO

The reactivity of 2,3-pyridine-dicarboxylic (known as quinolinic or H2qui) acid and 2,5-pyridine-dicarboxylic (known as isocinchomeronic or H2icc) acid has been investigated as a complexing agent toward the niobium(IV) tetrachloride precursor (NbCl4·2THF) in different organic solvent mixtures. It resulted in the isolation of four crystalline assemblies of mononuclear coordination complexes 1-4 [Nb(HL)4·solvent], where HL is the monoprotonated quinolinate (Hqui) ligand (complexes 1-3) or the monoprotonated isocinchomeronate ligand (complex 4). For each complex, the discrete niobium(IV) center is eightfold coordinated to four oxygen atoms from the deprotonated carboxylate arm and four nitrogen atoms from the pyridine part of the dicarboxyl ligand with a dodecahedral environment [NbO4N4]. The remaining carboxyl arm (either in 3 or in 5 position) remained under its protonated form, leading to neutral [Nb(HL)4] moieties for compounds 1, 2, and 4, or the anionic [Nb(qui)(Hqui)3]- moiety for compound 3. The complexes are observed in various molecular arrangements, involving intercalated solvent molecules such as acetonitrile in compound 1 ([Nb(Hqui)4·0.8(CH3CN)], obtained at room temperature), a mixture of acetonitrile and pyridine in compound 2 ([Nb(Hqui)4·0.7CH3CN·2PYR], obtained via the solvothermal reaction at 80 °C), a mixture of pyridine and triethylamine, in addition with water and chloride species, in compound 3 ([Nb(qui)(Hqui)3·Cl·HPYR·HTEA·1.5H2O], obtained via solvothermal reaction at 80 °C), and N,N-dimethylformamide in compound 4 ([Nb(Hicc)4·6DMF], obtained at room temperature). The d1 configuration expected for the niobium(IV) centers has been analyzed by magnetic measurements, as well as by EPR and XPS. An anti-ferromagnetism transition has been observed at very low temperatures for complexes 1 (3.6 K) and 4 (3.3 K), for which the shortest Nb···Nb interatomic lengths occur.

6.
Molecules ; 27(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630791

RESUMO

Small molecules targeting the PD-1/PD-L1 checkpoint are actively searched to complement the anticancer arsenal. Different molecular scaffolds have been reported, including phenyl-pyrazolone derivatives which potently inhibit binding of PD-L1 to PD-1. These molecules are structurally close to antioxidant drug edaravone (EDA) used to treat amyotrophic lateral sclerosis. For this reason, we investigated the capacity of five PD-L1-binding phenyl-pyrazolone compounds (1-5) to scavenge the formation of oxygen free radicals using electron spin resonance spectroscopy with DPPH/DMPO probes. In addition, the reactivity of the compounds toward the oxidized base 5-formyluracil (5fU) was assessed using chromatography coupled to mass spectrometry and photodiode array detectors. The data revealed that the phenyl-pyrazolone derivatives display antioxidant properties and exhibit a variable reactivity toward 5fU. Compound 2 with a N-dichlorophenyl-pyrazolone moiety cumulates the three properties, being a potent PD-L1 binder, a robust antioxidant and an aldehyde-reactive compound. On the opposite, the adamantane derivative 5 is a potent PD-L1 binding with a reduced antioxidant potential and no aldehyde reactivity. The nature of the substituent on the phenyl-pyrazolone core modulates the antioxidant capacity and reactivity toward aromatic aldehydes. The molecular signature of the compound can be adapted at will, to confer additional properties to these PD-L1 binders.


Assuntos
Antineoplásicos , Pirazolonas , Aldeídos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antígeno B7-H1/metabolismo , Fluoruracila , Receptor de Morte Celular Programada 1
7.
Langmuir ; 37(16): 4836-4846, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33847121

RESUMO

Molybdenum dithiocarbamates (MoDTCs) are a class of lubricant additives widely employed in automotives. Most of the studies concerning MoDTC take into account the dimeric structures because of their industrial relevance, with the mononuclear compounds usually neglected, because isolating and characterizing subgroups of MoDTC molecules are generally difficult. However, the byproducts of the synthesis of MoDTC can impact the friction reduction performance at metallic interfaces, and the effect of mononuclear MoDTC (mMoDTC) compounds in the lubrication has not been considered yet in the literature. In this study, we consider for the first time the impurities of MoDTC consisting of mononuclear compounds and combine experimental and computational techniques to elucidate the interaction of these impurities with binuclear MoDTC in commercial formulations. We present a preliminary strategy to separate a commercial MoDTC product in chemically different fractions. These fractions present different tribological behaviors depending on the relative amount of mononuclear and binuclear complexes. The calculations indicate that the dissociation mechanism of mMoDTC is similar to the one observed for the dimeric structures. However, the different chemical properties of mMoDTC impact the kinetics for the formation of the beneficial molybdenum disulfide (MoS2) layers, as shown by the tribological experiments. These results help to understand the functionality of MoDTC lubricant additives, providing new insights into the complex synergy between the different chemical structures.

8.
Phys Chem Chem Phys ; 23(3): 1914-1922, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459301

RESUMO

In the present work, we report the electron transfers occurring after ionization of the guest molecules of t-stilbene incorporated in graphitized HZSM-5 zeolites and we compare these results with the data obtained previously for graphite-free zeolites. Complementary diffuse reflectance UV-vis and Raman scattering spectroscopies provide evidence for stabilization of long lived charge separated states as observed in non-graphitized ZSM-5. The spectral features indicate that these species are located in the channels of the zeolite structure. However, the pulsed EPR technique shows strong coupling between unpaired electrons and the 13C atoms in the case of graphitized zeolites while this interaction is not observed in normal zeolites. This is assigned to the presence of charge transfer complexes in the close vicinity of graphite areas and to the possible electron transfer to the graphitized domain. Using cyclic voltammetry, an electrochemical response is observed for the first time in such systems demonstrating the role played by graphite in the electron transfers.

9.
Nucleic Acids Res ; 47(10): 5429-5435, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31020309

RESUMO

Transcription factors are involved in many cellular processes that take place remote from their cognate DNA sequences. The efficiencies of these activities are thus in principle counteracted by high binding affinities of the factors to their cognate DNAs. Models such as facilitated diffusion or dissociation address this apparent contradiction. We show that the MYC associated transcription factor X (MAX) undergoes nanoscale conformational fluctuations in the DNA-bound state, which is consistent with facilitated dissociation from or diffusion along DNA strands by transiently reducing binding energies. An integrative approach involving EPR, NMR, crystallographic and molecular dynamics analyses demonstrates that the N-terminal domain of MAX constantly opens and closes around a bound DNA ligand thereby dynamically tuning the binding epitope and the mode of interaction.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , DNA/química , Epitopos/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Difusão , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Fatores de Transcrição/química
10.
Inorg Chem ; 59(7): 4527-4535, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32181663

RESUMO

The in-gel detection of proteins for various proteomic experiments is commonly done with the fluorescent RuII tris(bathophenanthroline disulfonate) complex (Ru(BPS)3), which is more cost-effective compared to commercial Ru-based formulations but requires tedious procedures for its preparation and strongly acidic staining conditions. Herein, we report the synthesis and characterization of heteroleptic RuII complexes Ru(BPS)2(BP) and Ru(BPS)(BP)2 containing bathophenanthroline (BP) and bathophenanthroline disulfonate disodium salt (BPS) in comparison with Ru(BPS)3. It was shown by fluorescent and UV-vis measurements that novel RuII complexes were excitable in both UV and visible light, close to emission bands of classical lasers, which is important for successful in-gel protein detection. Novel fluorescent dyes demonstrated improved protein detection in comparison with commercially available SYPRO Ruby staining solution. In addition, unlike commonly used staining protocols, staining with Ru(BPS)(BP)2 can be performed at nearly neutral pH, thereby reducing artificial post-translational modifications (PTMs).


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Fenantrolinas/química , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes/síntese química , Humanos , Fenantrolinas/síntese química , Proteínas/análise , Proteínas/química , Rutênio/química
11.
Chemistry ; 24(20): 5086-5090, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29356131

RESUMO

Small-molecule catalysts as mimics of biological systems illustrate the chemists' attempts at emulating the tantalizing abilities displayed by nature's metalloenzymes. Among these innate behaviors, spin multistate reactivity is used by biological systems as it offers thermodynamic leverage towards challenging chemical reactivity but this concept is difficult to translate into the realm of synthetic organometallic catalysis. Here, we report a rare example of molecular spin catalysis involving multistate reactivity in a small-molecule biomimetic copper catalyst applied to aziridination. This behavior is supported by spin state flexibility enabled by the redox-active ligand.

12.
Angew Chem Int Ed Engl ; 57(18): 5171-5175, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29431894

RESUMO

Mixtures of water and glycerol provide popular matrices for low-temperature spectroscopy of vitrified samples. However, they involve counterintuitive physicochemical properties, such as spontaneous nanoscopic phase separations (NPS) in solutions that appear macroscopically homogeneous. We demonstrate that such phenomena can substantially influence the efficiency of dynamic nuclear polarization (DNP) by factors up to 20 % by causing fluctuations in local concentrations of polarization agents (radicals). Thus, a spontaneous NPS of water/glycerol mixtures that takes place on time scales on the order of 30-60 min results in a confinement of polarization agents in nanoscopic water-rich vesicles, which in return affects the DNP. Such effects were found for three common polarization agents, TEMPOL, AMUPol and Trityl.

13.
Chemistry ; 23(60): 15030-15034, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28873243

RESUMO

Nickel complexes have gained sustained attention as efficient catalysts in cross-coupling reactions and co-catalysts in dual systems due to their ability to react with radical species. Central to this reactivity is nickel's propensity to shuttle through several accessible redox states from Ni0 to NiIV . Here, we report the catalytic generation of trifluoromethyl radicals from a nickel complex bearing redox-active iminosemiquinone ligands. This unprecedented reactivity is enabled through ligand-based oxidation performing electron transfer to an electrophilic CF3+ source while the nickel oxidation state is preserved. Additionally, extension of this reactivity to a copper complex bearing a single redox equivalent is reported, thus providing a unified reactivity scheme. These results open new pathways in radical chemistry with redox-active ligands.

14.
Environ Sci Technol ; 51(9): 5242-5251, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28383257

RESUMO

Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight)-1] and cabbage [4448 mg (kg of dry weight)-1], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 µg day-1), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.


Assuntos
Agricultura , Cobre/toxicidade , Microanálise por Sonda Eletrônica , Lactuca/metabolismo , Nanopartículas Metálicas/toxicidade , Óxidos
15.
J Biol Chem ; 290(38): 23307-19, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26203186

RESUMO

The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Membrana Celular/enzimologia , Niacina/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Membrana Celular/genética , Niacina/genética , Periplasma/enzimologia , Periplasma/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
Mol Microbiol ; 98(3): 490-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192332

RESUMO

Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16-stranded transmembrane ß barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner ß-barrel wall. The membrane-proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the ß barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Inorg Chem ; 55(20): 10453-10466, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27709964

RESUMO

Five new heterometallic UO22+-Co2+ coordination polymers have been obtained by hydrothermal reactions of uranyl nitrate and metallic cobalt with aromatic polycarboxylic acids. Single-crystal X-ray diffraction reveals the formation of four 3D frameworks with the mellitate (noted mel) ligand and one 2D network with the isophthalate (noted iso) ligand. The compounds [(UO2(H2O))2Co(H2O)4(mel)]·4H2O (1), [UO2Co(H2O)4(H2mel)]·2H2O (2), and [(UO2(H2O))2Co(H2O)4(mel)] (4) consist of 3D frameworks built up from the connection of mellitate ligands and mononuclear metallic centers. These three compounds exhibit two types of geometry for the uranyl cation: pentagonal bipyramidal environment for 1 and 4, and hexagonal bipyramidal environment for 2. Using the mellitate ligand, the uranyl dinuclear unit is isolated in the compound [(UO2)2(OH)2(Co(H2O)4)2(mel)]·2H2O (3). Due to their 2D framework and the presence of uncoordinated cobalt(II) cations, the compound [(UO2)(iso)3][Co(H2O)6]·3(H2O) (5) is drastically different than the previous one. The thermal behavior of compounds 1, 2, and 3 has been studied by thermogravimetric analysis, X-ray thermodiffraction, and in situ infrared. By heating, the dehydration of compounds 1 and 2 promotes two structural transitions (1 → 1' and 2 → 2'). The crystal structures of [(UO2(H2O))2Co(H2O)2(mel)] (1') and [(UO2)Co(H2mel)] (2') were determined by single-crystal X-ray diffraction; each of them presents a heterometallic interaction between uranyl bond and the Co(II) center. Due to the rarely reported coordination environment for the cobalt center in compound 2' (square pyramidal configuration), the magnetic properties and EPR characterizations of the compounds 2 and 2' were also investigated.

18.
Phys Chem Chem Phys ; 18(22): 14960-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189653

RESUMO

In the search for new cathode materials for Li-ion batteries, borate (BO3(3-)) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O5(4-) based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (∼0.3 Li(+)) in a potential window ranging from 2.5 to 4.5 V vs. Li(+)/Li(0). We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li(+)/Li(0) is associated with the Cu(3+)/Cu(2+) redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li(+)/Li(0) which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ∼1.4 mS cm(-1) at 500 °C.

19.
Angew Chem Int Ed Engl ; 55(36): 10712-6, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27504607

RESUMO

The reactivity of a stable copper(II) complex bearing fully oxidized iminobenzoquinone redox ligands towards nucleophiles is described. In sharp contrast with its genuine low-valent counterpart bearing reduced ligands, this complex performs high-yielding C-N bond formations. Mechanistic studies suggest that this behavior could stem from a mechanism akin to reductive elimination occurring at the metal center but facilitated by the ligand: it is proposed that a masked high oxidation state of the metal can be stabilized as a lower copper(II) oxidation state by the redox ligands without forfeiting its ability to behave as a high-valent copper(III) center. These observations are substantiated by a combination of advanced EPR spectroscopy techniques with DFT studies. This work sheds light on the potential of redox ligands as promoters of unusual reactivities at metal centers and illustrates the concept of masked high-valent metallic species.

20.
Mol Microbiol ; 92(6): 1164-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24646315

RESUMO

FhaC is an integral outer membrane protein of the whooping cough agent Bordetella pertussis that mediates the transport to the cell surface of a major virulence factor, the filamentous haemagglutinin adhesin FHA. The FHA/FhaC pair is a prototypic TpsA/TpsB system of the widespread 'Two-Partner Secretion' pathway, dedicated to the transport of long extracellular proteins in various pathogenic and environmental Gram-negative bacteria. FhaC belongs to the ubiquitous Omp85 superfamily of protein transporters. The X-ray structure of FhaC shows that the transmembrane ß-barrel channel hypothesized to serve as the FHA-conducting pore is obstructed by two structural elements conserved among TpsB transporters, an N-terminal α helix and an extracellular loop. Here, we provide evidence for conformational dynamics of FhaC related to the secretion mechanism. Using paramagnetic electron resonance, electrophysiology and in vivo approaches, we showed that FhaC exchanges between open and closed conformations. The interaction with its secretory partner FHA alters this distribution of conformations. The open conformation of FhaC implies a large displacement from the channel of the N-terminal 'plug' helix, which remains in the periplasm during FHA secretion. The membrane environment favours the dynamics of the TpsB transporter.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos , Bordetella pertussis/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA