Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Kunstliche Intell (Oldenbourg) ; 35(2): 191-199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994668

RESUMO

A critical understanding of digital technologies is an empowering competence for citizens of all ages. In this paper we introduce an open educational approach of artificial intelligence (AI) for everyone. Through a hybrid and participative MOOC we aim to develop a critical and creative perspective about the way AI is integrated in the different domains of our lives. We have built and now operate a MOOC in AI for all the citizens from 15 years old. The MOOC aims to help understanding AI foundations and applications, intended for a large public beyond the school domain, with more than 20,000 participants engaged in the MOOC after nine months. This study addresses the pedagogical methods for designing and evaluating the MOOC in AI. Through this study we raise four questions regarding citizen education in AI: Why (i.e., to which aim) sharing such citizen formation? What is the disciplinary knowledge to be shared? What are the competencies to develop? How can it be shared and evaluated? We finally share learning analytics, quantitative and qualitative evaluations and explain to which extent educational science research helps enlighten such large scale initiatives. The analysis of the MOOC in AI helps to identify that the main feedback related to AI is "fear", because AI is unknown and mysterious to the participants. After developing playful AI simulations, the AI mechanisms become familiar for the MOOC participants and they can overcome their misconception on AI to develop a more critical point of view. This contribution describes a K-12 AI educational project or initiatives of a considerable impact, via the formation of teachers and other educators. Supplementary Information: The online version contains supplementary material available at 10.1007/s13218-021-00725-7.

2.
Front Comput Neurosci ; 12: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687053

RESUMO

Deep artificial neural networks are feed-forward architectures capable of very impressive performances in diverse domains. Indeed stacking multiple layers allows a hierarchical composition of local functions, providing efficient compact mappings. Compared to the brain, however, such architectures are closer to a single pipeline and require huge amounts of data, while concrete cases for either human or machine learning systems are often restricted to not-so-big data sets. Furthermore, interpretability of the obtained results is a key issue: since deep learning applications are increasingly present in society, it is important that the underlying processes be accessible and understandable to every one. In order to target these challenges, in this contribution we analyze how considering prototypes in a rather generalized sense (with respect to the state of the art) allows to reasonably work with small data sets while providing an interpretable view of the obtained results. Some mathematical interpretation of this proposal is discussed. Sensitivity to hyperparameters is a key issue for reproducible deep learning results, and is carefully considered in our methodology. Performances and limitations of the proposed setup are explored in details, under different hyperparameter sets, in an analogous way as biological experiments are conducted. We obtain a rather simple architecture, easy to explain, and which allows, combined with a standard method, to target both performances and interpretability.

3.
J Physiol Paris ; 101(1-3): 118-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18035526

RESUMO

High-level specification of how the brain represents and categorizes the causes of its sensory input allows to link "what is to be done" (perceptual task) with "how to do it" (neural network calculation). In this article, we describe how the variational framework, which encountered a large success in modeling computer vision tasks, has some interesting relationships, at a mesoscopic scale, with computational neuroscience. We focus on cortical map computations such that "what is to be done" can be represented as a variational approach, i.e., an optimization problem defined over a continuous functional space. In particular, generalizing some existing results, we show how a general variational approach can be solved by an analog neural network with a given architecture and conversely. Numerical experiments are provided as an illustration of this general framework, which is a promising framework for modeling macro-behaviors in computational neuroscience.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Animais , Teorema de Bayes , Córtex Cerebral/fisiologia , Simulação por Computador , Humanos
4.
Front Neuroinform ; 11: 49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919854

RESUMO

The retina encodes visual scenes by trains of action potentials that are sent to the brain via the optic nerve. In this paper, we describe a new free access user-end software allowing to better understand this coding. It is called PRANAS (https://pranas.inria.fr), standing for Platform for Retinal ANalysis And Simulation. PRANAS targets neuroscientists and modelers by providing a unique set of retina-related tools. PRANAS integrates a retina simulator allowing large scale simulations while keeping a strong biological plausibility and a toolbox for the analysis of spike train population statistics. The statistical method (entropy maximization under constraints) takes into account both spatial and temporal correlations as constraints, allowing to analyze the effects of memory on statistics. PRANAS also integrates a tool computing and representing in 3D (time-space) receptive fields. All these tools are accessible through a friendly graphical user interface. The most CPU-costly of them have been implemented to run in parallel.

5.
Surg Technol Int ; 14: 231-5, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16525977

RESUMO

Endoscopic bypass grafting can be complicated by limited intraoperative orientation. A method to overlay the preoperative model of the coronary tree on the live endoscopic images of the heart was therefore developed. The method is three-fold: (1) the three-dimensional (3D) model of the coronary tree is reconstructed from traditional angiograms; (2) preoperative images are registered with the intraoperative position of the patient in the operating room (OR); and (3) an iterative and interactive identification of clinically relevant landmarks within the operative field on the heart surface before their registration with the preoperative model of the coronaries. This algorithm allows one to compensate deformations (breathing, intraoperative heart shift) and leads to a precise overlay of the coronary network on the heart surface. For ergonomic reasons, the 3D model can be displayed directly within the visual field of any telesurgical master console. It thus provides an effective navigational aid to the surgeon similar to a global positioning system (GPS) in vehicles. Animal trials have been performed using the Da Vinci (Intuitive Surgical, Sunnyvale, CA, USA) teleoperated system to validate the method. Qualitative and quantitative analysis demonstrate the potential value during total endoscopic coronary artery bypass grafting.


Assuntos
Ponte de Artéria Coronária/métodos , Endoscopia , Angiografia Coronária , Doença da Artéria Coronariana/cirurgia , Vasos Coronários/anatomia & histologia , Humanos , Imageamento Tridimensional , Modelos Animais , Consulta Remota , Robótica , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X
6.
PLoS One ; 8(7): e69574, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936049

RESUMO

Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations.


Assuntos
Movimento Celular , Crista Neural/citologia , Imagem com Lapso de Tempo/métodos , Gravação de Videoteipe/métodos , Algoritmos , Animais , Animais Geneticamente Modificados , Depressores do Sistema Nervoso Central/farmacologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Etanol/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Crista Neural/embriologia , Crista Neural/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
J Physiol Paris ; 105(1-3): 83-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21945195

RESUMO

This article introduces general concepts and definitions related to the notion of asynchronous computation in the framework of artificial neural networks. Using the dynamic field theory as an illustrative example, we explain why one may want to perform such asynchronous computation and how one can implement it since this computational scheme draws several consequences on both the trajectories and the stability of the whole system. After giving an unequivocal definition of asynchronous computation, we present a few practically usable methods and quantitative bounds that can guarantee most of the mesoscopic properties of the system.


Assuntos
Simulação por Computador , Modelos Neurológicos , Redes Neurais de Computação , Algoritmos , Inteligência Artificial
8.
J Physiol Paris ; 104(1-2): 5-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19925865

RESUMO

In the present overview, our wish is to demystify some aspects of coding with spike-timing, through a simple review of well-understood technical facts regarding spike coding. Our goal is a better understanding of the extent to which computing and modeling with spiking neuron networks might be biologically plausible and computationally efficient. We intentionally restrict ourselves to a deterministic implementation of spiking neuron networks and we consider that the dynamics of a network is defined by a non-stochastic mapping. By staying in this rather simple framework, we are able to propose results, formula and concrete numerical values, on several topics: (i) general time constraints, (ii) links between continuous signals and spike trains, (iii) spiking neuron networks parameter adjustment. Beside an argued review of several facts and issues about neural coding by spikes, we propose new results, such as a numerical evaluation of the most critical temporal variables that schedule the progress of realistic spike trains. When implementing spiking neuron networks, for biological simulation or computational purpose, it is important to take into account the indisputable facts here unfolded. This precaution could prevent one from implementing mechanisms that would be meaningless relative to obvious time constraints, or from artificially introducing spikes when continuous calculations would be sufficient and more simple. It is also pointed out that implementing a large-scale spiking neuron network is finally a simple task.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Dinâmica não Linear , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-18946532

RESUMO

We present a mathematical analysis of networks with integrate-and-fire (IF) neurons with conductance based synapses. Taking into account the realistic fact that the spike time is only known within some finite precision, we propose a model where spikes are effective at times multiple of a characteristic time scale delta, where delta can be arbitrary small (in particular, well beyond the numerical precision). We make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the synaptic weights space, traditionally called the "edge of chaos", a notion mathematically well defined in the present paper. Furthermore, except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. This shows that the neural code is entirely "in the spikes" in this case. As a key tool, we introduce an order parameter, easy to compute numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities of the network. This allows us to compare the computational capabilities of leaky and IF models and conductance based models. The present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for both extensions.

10.
J Comput Neurosci ; 23(3): 349-98, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17629781

RESUMO

We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Simulação por Computador , Eletrofisiologia , Humanos , Rede Nervosa/citologia , Software , Sinapses/fisiologia
11.
J Comput Neurosci ; 17(3): 271-87, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15483393

RESUMO

Regarding biological visual classification, recent series of experiments have enlighten the fact that data classification can be realized in the human visual cortex with latencies of about 100-150 ms, which, considering the visual pathways latencies, is only compatible with a very specific processing architecture, described by models from Thorpe et al. Surprisingly enough, this experimental evidence is in coherence with algorithms derived from the statistical learning theory. More precisely, there is a double link: on one hand, the so-called Vapnik theory offers tools to evaluate and analyze the biological model performances and on the other hand, this model is an interesting front-end for algorithms derived from the Vapnik theory. The present contribution develops this idea, introducing a model derived from the statistical learning theory and using the biological model of Thorpe et al. We experiment its performances using a restrained sign language recognition experiment. This paper intends to be read by biologist as well as statistician, as a consequence basic material in both fields have been reviewed.


Assuntos
Aprendizagem/fisiologia , Modelos Neurológicos , Córtex Visual/fisiologia , Algoritmos , Documentação , Humanos , Modelos Psicológicos , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Língua de Sinais , Vias Visuais/fisiologia
12.
Neuroimage ; 23 Suppl 1: S46-55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15501100

RESUMO

We survey the recent activities of the Odyssée Laboratory in the area of the application of mathematics to the design of models for studying brain anatomy and function. We start with the problem of reconstructing sources in MEG and EEG, and discuss the variational approach we have developed for solving these inverse problems. This motivates the need for geometric models of the head. We present a method for automatically and accurately extracting surface meshes of several tissues of the head from anatomical magnetic resonance (MR) images. Anatomical connectivity can be extracted from diffusion tensor magnetic resonance images but, in the current state of the technology, it must be preceded by a robust estimation and regularization stage. We discuss our work based on variational principles and show how the results can be used to track fibers in the white matter (WM) as geodesics in some Riemannian space. We then go to the statistical modeling of functional magnetic resonance imaging (fMRI) signals from the viewpoint of their decomposition in a pseudo-deterministic and stochastic part that we then use to perform clustering of voxels in a way that is inspired by the theory of support vector machines and in a way that is grounded in information theory. Multimodal image matching is discussed next in the framework of image statistics and partial differential equations (PDEs) with an eye on registering fMRI to the anatomy. The paper ends with a discussion of a new theory of random shapes that may prove useful in building anatomical and functional atlases.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Imagem de Difusão por Ressonância Magnética , Humanos , Magnetoencefalografia , Modelos Anatômicos , Modelos Estatísticos , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Retina/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA