Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897511

RESUMO

Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.


Assuntos
Spheniscidae , Animais , Evolução Molecular , Seleção Genética , Spheniscidae/genética , Receptores Toll-Like/genética
2.
Proc Natl Acad Sci U S A ; 117(36): 22303-22310, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817535

RESUMO

Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.


Assuntos
Evolução Molecular , Genoma/genética , Spheniscidae , Animais , Regiões Antárticas , Austrália , Mudança Climática , Ecossistema , Estudo de Associação Genômica Ampla , Nova Zelândia , Filogenia , Seleção Genética/genética , Spheniscidae/classificação , Spheniscidae/genética , Spheniscidae/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(52): 26690-26696, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843914

RESUMO

Climate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera (Eudyptes, Pygoscelis, and Aptenodytes). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues.

4.
Mol Biol Evol ; 37(6): 1708-1726, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096861

RESUMO

Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.


Assuntos
Seleção Genética , Spheniscidae/genética , Receptores Toll-Like/genética , Animais , Flagelina/imunologia , Variação Genética , Filogeografia , Spheniscidae/imunologia
5.
Proc Biol Sci ; 288(1954): 20210754, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34229490

RESUMO

Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.


Assuntos
Tartarugas , Adaptação Fisiológica/genética , Animais , Deriva Genética , Oceano Pacífico , Tartarugas/genética
6.
Mol Phylogenet Evol ; 139: 106563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323335

RESUMO

The study of systematics in wide-ranging seabirds can be challenging due to the vast geographic scales involved, as well as the possible discordance between molecular, morphological and behavioral data. In the Southern Ocean, macaroni penguins (Eudyptes chrysolophus) are distributed over a circumpolar range including populations in Antarctic and sub-Antarctic areas. Macquarie Island, in its relative isolation, is home to a closely related endemic taxon - the royal penguin (Eudyptes schlegeli), which is distinguishable from E. chrysolophus mainly by facial coloration. Although these sister taxa are widely accepted as representing distinct species based on morphological grounds, the extent of their genome-wide differentiation remains uncertain. In this study, we use genome-wide Single Nucleotide Polymorphisms to test genetic differentiation between these geographically isolated taxa and evaluate the main drivers of population structure among breeding colonies of macaroni/royal penguins. Genetic similarity observed between macaroni and royal penguins suggests they constitute a single evolutionary unit. Nevertheless, royal penguins exhibited a tendency to cluster only with macaroni individuals from Kerguelen Island, suggesting that dispersal occurs mainly between these neighboring colonies. A stepping stone model of differentiation of macaroni/royal populations was further supported by a strong pattern of isolation by distance detected across its whole distribution range, possibly driven by large geographic distances between colonies as well as natal philopatry. However, we also detected intraspecific genomic differentiation between Antarctic and sub-Antarctic populations of macaroni penguins, highlighting the role of environmental factors together with geographic distance in the processes of genetic differentiation between Antarctic and sub-Antarctic waters.


Assuntos
Variação Genética , Spheniscidae/genética , Animais , Regiões Antárticas , Análise por Conglomerados , Genoma , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificação
8.
BMC Evol Biol ; 18(1): 90, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29898661

RESUMO

BACKGROUND: Historical factors, demography, reproduction and dispersal are crucial in determining the genetic structure of seabirds. In the Antarctic marine environment, penguins are a major component of the avian biomass, dominant predators and important bioindicators of ecological change. Populations of chinstrap penguins have decreased in nearly all their breeding sites, and their range is expanding throughout the Antarctic Peninsula. Population genetic structure of this species has been studied in some colonies, but not between breeding colonies in the Antarctic Peninsula or at the species' easternmost breeding colony (Bouvetøya). RESULTS: Connectivity, sex-biased dispersal, diversity, genetic structure and demographic history were studied using 12 microsatellite loci and a mitochondrial DNA region (HVRI) in 12 breeding colonies in the South Shetland Islands (SSI) and the Western Antarctic Peninsula (WAP), and one previously unstudied sub-Antarctic island, 3600 km away from the WAP (Bouvetøya). High genetic diversity, evidence of female bias-dispersal and a sign of population expansion after the last glacial maximum around 10,000 mya were detected. Limited population genetic structure and lack of isolation by distance throughout the region were found, along with no differentiation between the WAP and Bouvetøya (overall microsatellite F ST = 0.002, p = 0.273; mtDNA F ST  = - 0.004, p = 0.766), indicating long distance dispersal. Therefore, genetic assignment tests could not assign individuals to their population(s) of origin. The most differentiated location was Georges Point, one of the southernmost breeding colonies of this species in the WAP. CONCLUSIONS: The subtle differentiation found may be explained by some combination of low natal philopatric behavior, high rates of dispersal and/or generally high mobility among colonies of chinstrap penguins compared to other Pygoscelis species.


Assuntos
Genética Populacional , Oceanos e Mares , Spheniscidae/genética , Animais , Regiões Antárticas , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Demografia , Feminino , Variação Genética , Geografia , Haplótipos/genética , Ilhas , Masculino , Repetições de Microssatélites
9.
BMC Genomics ; 19(1): 53, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338715

RESUMO

BACKGROUND: Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. RESULTS: We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks < 1) across the mitochondrial genome, which is consistent with the hypothesis that purifying selection is constraining mitogenome evolution to maintain Oxidative phosphorylation (OXPHOS) proteins and functionality. Pairwise species maximum-likelihood analyses of selection at codon sites suggest positive selection has occurred on ATP8 (Fixed-Effects Likelihood, FEL) and ND4 (Single Likelihood Ancestral Counting, SLAC) in all penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. CONCLUSIONS: These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be particularly useful for developing predictive models of how these species may respond to severe climatic changes in the future.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/química , Interação Gene-Ambiente , Genômica
10.
Arch Environ Contam Toxicol ; 75(1): 75-86, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29725722

RESUMO

Penguins are reliable sentinels for environmental assessments of mercury (Hg) due to their longevity, abundance, high trophic level, and relatively small foraging areas. We analyzed Hg concentrations from blood and feathers of adult Humboldt penguins (Spheniscus humboldti) and feathers of chinstrap penguins (Pygoscelis antarcticus) from different reproductive colonies with variable degrees of urbanization and industrialization along the Chilean and Antarctic coasts. We evaluated Hg concentration differences between species, sexes (Humboldt penguins), and localities. Our results showed significantly greater levels in Humboldt penguins than in chinstrap penguins and nonsignificant differences between sexes among Humboldts. Penguin Hg concentrations showed a latitudinal pattern, with greater values of the metal at lower latitudes, independent of the species. Both studied penguin species showed elevated Hg concentrations compared to their congeners, highlighting the necessity to investigate potential negative effects on their populations. Although differences between species are possibly due to variation in diet and trophic level, our results suggest an important effect of the degree of Hg pollution adjacent to foraging areas. Further research on Hg content in prey species and environmental samples, together with a larger overall sample size, and investigation on penguin's diet and trophic level are needed to elucidate Hg bioavailability in each location and the role of local Hg pollution levels. Likewise, it is important to monitor Hg and other heavy metals of ecotoxicological importance in penguin populations in vulnerable regions of Chile.


Assuntos
Exposição Ambiental/análise , Mercúrio/análise , Spheniscidae , Animais , Regiões Antárticas , Chile , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Plumas/química , Feminino , Masculino , Mercúrio/sangue , Fatores Sexuais
11.
Mol Phylogenet Evol ; 107: 486-498, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940333

RESUMO

Two main hypotheses have been debated about the biogeography of the Southern Ocean: (1) the Antarctic Polar Front (APF), acting as a barrier between Antarctic and sub-Antarctic provinces, and (2) the Antarctic Circumpolar Current (ACC), promoting gene flow among sub-Antarctic areas. The Gentoo penguin is distributed throughout these two provinces, separated by the APF. We analyzed mtDNA (HVR1) and 12 microsatellite loci of 264 Gentoo penguins, Pygoscelis papua, from 12 colonies spanning from the Western Antarctic Peninsula and the South Shetland Islands (WAP) to the sub-Antarctic Islands (SAI). While low genetic structure was detected among WAP colonies (mtDNA ФST=0.037-0.133; microsatellite FST=0.009-0.063), high differentiation was found between all SAI and WAP populations (mtDNA ФST=0.678-0.930; microsatellite FST=0.110-0.290). These results suggest that contemporary dispersal around the Southern Ocean is very limited or absent. As predicted, the APF appears to be a significant biogeographical boundary for Gentoo penguin populations; however, the ACC does not promote connectivity in this species. Our data suggest demographic expansion in the WAP during the last glacial maximum (LGM, about 20kya), but stability in SAI. Phylogenetic analyses showed a deep divergence between populations from the WAP and those from the SAI. Therefore, taxonomy should be further revised. The Crozet Islands resulted as a basal clade (3.57Mya), followed by the Kerguelen Islands (2.32Mya) as well as a more recent divergence between the Falkland/Malvinas Islands and the WAP (1.27Mya). Historical isolation, local adaptation, and past climate scenarios of those Evolutionarily Significant Units may have led to different potentials to respond to climate changes.


Assuntos
Variação Genética , Oceanos e Mares , Filogeografia , Spheniscidae/classificação , Animais , DNA Mitocondrial/genética , Demografia , Genética Populacional , Repetições de Microssatélites/genética , Filogenia , Probabilidade
12.
Genet Mol Biol ; 40(3): 676-687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898354

RESUMO

Microsatellites are valuable molecular markers for evolutionary and ecological studies. Next generation sequencing is responsible for the increasing number of microsatellites for non-model species. Penguins of the Pygoscelis genus are comprised of three species: Adélie (P. adeliae), Chinstrap (P. antarcticus) and Gentoo penguin (P. papua), all distributed around Antarctica and the sub-Antarctic. The species have been affected differently by climate change, and the use of microsatellite markers will be crucial to monitor population dynamics. We characterized a large set of genome-wide microsatellites and evaluated polymorphisms in all three species. SOLiD reads were generated from the libraries of each species, identifying a large amount of microsatellite loci: 33,677, 35,265 and 42,057 for P. adeliae, P. antarcticus and P. papua, respectively. A large number of dinucleotide (66,139), trinucleotide (29,490) and tetranucleotide (11,849) microsatellites are described. Microsatellite abundance, diversity and orthology were characterized in penguin genomes. We evaluated polymorphisms in 170 tetranucleotide loci, obtaining 34 polymorphic loci in at least one species and 15 polymorphic loci in all three species, which allow to perform comparative studies. Polymorphic markers presented here enable a number of ecological, population, individual identification, parentage and evolutionary studies of Pygoscelis, with potential use in other penguin species.

13.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38761112

RESUMO

The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.


Assuntos
Camelídeos Americanos , Animais , Camelídeos Americanos/genética , Ecossistema , Clima Desértico , Adaptação Fisiológica/genética , Genoma , Variação Genética , Regiões Antárticas , América do Sul , Evolução Molecular
14.
J Hered ; 103(4): 479-92, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22589556

RESUMO

The Neotropical otter (Lontra longicaudis) is a medium-sized semiaquatic carnivore with a broad distribution in the Neotropical region. Despite being apparently common in many areas, it is one of the least known otters, and genetic studies on this species are scarce. Here, we have investigated its genetic diversity, population structure, and demographic history across a large portion of its geographic range by analyzing 1471 base pairs (bp) of mitochondrial DNA from 52 individuals. Our results indicate that L. longicaudis presents high levels of genetic diversity and a consistent phylogeographic pattern, suggesting the existence of at least 4 distinct evolutionary lineages in South America. The observed phylogeographic partitions are partially congruent with the subspecies classification previously proposed for this species. Coalescence-based analyses indicate that Neotropical otter mitochondrial DNA lineages have shared a rather recent common ancestor, approximately 0.5 Ma, and have subsequently diversified into the observed phylogroups. A consistent scenario of recent population expansion was identified in Eastern South America based on several complementary analyses of historical demography. The results obtained here provide novel insights on the evolutionary history of this largely unknown Neotropical mustelid and should be useful to design conservation and management policies on behalf of this species and its habitats.


Assuntos
Lontras/genética , Animais , DNA Mitocondrial/química , Evolução Molecular , Variação Genética , Filogeografia , Especificidade da Espécie
15.
Animals (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739811

RESUMO

Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.

16.
Curr Biol ; 32(16): 3650-3658.e4, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35779528

RESUMO

Comparative whole-genome analyses hold great power to illuminate commonalities and differences in the evolution of related species that share similar ecologies. The mustelid subfamily Lutrinae includes 13 currently recognized extant species of otters,1-5 a semiaquatic group whose evolutionary history is incompletely understood. We assembled a dataset comprising 24 genomes from all living otter species, 14 of which were newly sequenced. We used this dataset to infer phylogenetic relationships and divergence times, to characterize patterns of genome-wide genealogical discordance, and to investigate demographic history and current genomic diversity. We found that genera Lutra, Aonyx, Amblonyx, and Lutrogale form a coherent clade that should be synonymized under Lutra, simplifying the taxonomic structure of the subfamily. The poorly known tropical African Aonyx congicus and the more widespread Aonyx capensis were found to be reciprocally monophyletic (having diverged 440,000 years ago), supporting the validity of the former as a distinct species. We observed variable changes in effective population sizes over time among otters within and among continents, although several species showed similar trends of expansions and declines during the last 100,000 years. This has led to different levels of genomic diversity assessed by overall heterozygosity, genome-wide SNV density, and run of homozygosity burden. Interestingly, there were cases in which diversity metrics were consistent with the current threat status (mostly based on census size), highlighting the potential of genomic data for conservation assessment. Overall, our results shed light on otter evolutionary history and provide a framework for further in-depth comparative genomic studies targeting this group.


Assuntos
Lontras , Animais , Sequência de Bases , Lontras/genética , Filogenia
17.
BMC Evol Biol ; 11: 53, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356052

RESUMO

BACKGROUND: A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax). RESULTS: We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. CONCLUSIONS: Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments.


Assuntos
Ecossistema , Genética Populacional , Lontras/genética , Filogeografia , Adaptação Biológica/genética , Animais , Argentina , Chile , DNA Mitocondrial/genética , Haplótipos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
Int J Parasitol ; 51(11): 899-911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044005

RESUMO

The specialist versus generalist strategies of hemoparasites in relation to their avian host, as well as environmental factors, can influence their prevalence, diversity and distribution. In this paper we investigated the influence of avian host species, as well as the environmental and geographical factors, on the strategies of Haemoproteus and Plasmodium hemoparasites. We determined prevalence and diversity by targeting their cytochrome b (Cytb) in a total of 2,590 passerine samples from 138 localities of Central and South America, and analysed biogeographic patterns and host-parasite relationships. We found a total prevalence of 23.2%. Haemoproteus presented a higher prevalence (15.3%) than Plasmodium (4.3%), as well as a higher diversity and host specificity. We determined that Plasmodium and Haemoproteus prevalences correlated positively with host diversity (Shannon index) and were significantly influenced by bird diversity, demonstrating a possible "amplification effect". We found an effect of locality and the avian family for prevalences of Haemoproteus and Plasmodium. These results suggest that Haemoproteus is more specialist than Plasmodium and could be mostly influenced by its avian host and the Andes Mountains.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Doenças das Aves/epidemiologia , Haemosporida/genética , Malária Aviária/epidemiologia , Filogenia , Plasmodium/genética , Prevalência
19.
Science ; 374(6569): 842-847, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762458

RESUMO

Pacific Ocean rockfishes (genus Sebastes) exhibit extreme variation in life span, with some species being among the most long-lived extant vertebrates. We de novo assembled the genomes of 88 rockfish species and from these identified repeated signatures of positive selection in DNA repair pathways in long-lived taxa and 137 longevity-associated genes with direct effects on life span through insulin signaling and with pleiotropic effects through size and environmental adaptations. A genome-wide screen of structural variation reveals copy number expansions in the immune modulatory butyrophilin gene family in long-lived species. The evolution of different rockfish life histories is coupled to genetic diversity and reshapes the mutational spectrum driving segregating CpG→TpG variants in long-lived species. These analyses highlight the genetic innovations that underlie life history trait adaptations and, in turn, how they shape genomic diversity.


Assuntos
Evolução Biológica , Genoma , Longevidade/genética , Perciformes/genética , Perciformes/fisiologia , Animais , Butirofilinas/genética , Reparo do DNA/genética , Dosagem de Genes , Pleiotropia Genética , Especiação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Imunomodulação/genética , Características de História de Vida , Mutação , Oceano Pacífico , Filogenia , Seleção Genética , Sequenciamento Completo do Genoma
20.
J Hered ; 101(6): 676-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20688888

RESUMO

The evolutionary history of a species can be revealed by phylogeographical analysis; nevertheless, not only historical but also contemporary processes can imprint on the distribution of genetic diversity. We report on the phylogeny of Lontra ssp. in South America, and the role of spatial heterogeneity in shaping the distribution and population structure of the endangered marine otter, Lontra felina. Analyzing a total of 2261 bp of mitochondrial DNA (mtDNA) revealed the recent divergence of L. felina from L. provocax. A strong population structure (Φ(st) = 0.83, P < 0.0001) and a significant pattern of isolation by distance were described for L. felina (n = 168) across a wide geographical distribution (13°53'S to 43°36'S). Lontra felina mtDNA phylogeny is composed of 2 main clades: a clade from Peru and another composed of Chilean haplotypes. Northern populations show different divergent lineages and higher genetic diversity when compared with more recently colonized southern populations. Furthermore, long sandy beaches seem to act as barriers to dispersal, creating 2 evolutionary significant units in agreement with subspecies previous description, and at least 5 different management units (MUs). At a fine spatial scale, the size of rocky seashore patches, the distance between patches and anthropogenic factors also play important roles in species gene flow.


Assuntos
Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , NADH Desidrogenase/genética , Lontras/genética , Animais , Sequência de Bases , Chile , Mudança Climática , Barreiras de Comunicação , Fluxo Gênico , Deriva Genética , Genética Populacional , Geografia , Haplótipos , Dados de Sequência Molecular , Peru , Filogenia , Filogeografia , Reação em Cadeia da Polimerase , Dinâmica Populacional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA