Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918899

RESUMO

Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between two contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these two stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046022

RESUMO

Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.


Assuntos
Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Fenômenos Fisiológicos Vegetais , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Modelos Biológicos , Especificidade de Órgãos/genética , Raízes de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma
3.
J Exp Bot ; 75(10): 2781-2798, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366662

RESUMO

Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Sulfatos , Sulfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento
4.
Plant Cell ; 32(7): 2094-2119, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169959

RESUMO

Nitrogen (N) is an essential macronutrient for plants and a major limiting factor for plant growth and crop production. Nitrate is the main source of N available to plants in agricultural soils and in many natural environments. Sustaining agricultural productivity is of paramount importance in the current scenario of increasing world population, diversification of crop uses, and climate change. Plant productivity for major crops around the world, however, is still supported by excess application of N-rich fertilizers with detrimental economic and environmental impacts. Thus, understanding how plants regulate nitrate uptake and metabolism is key for developing new crops with enhanced N use efficiency and to cope with future world food demands. The study of plant responses to nitrate has gained considerable interest over the last 30 years. This review provides an overview of key findings in nitrate research, spanning biochemistry, molecular genetics, genomics, and systems biology. We discuss how we have reached our current view of nitrate transport, local and systemic nitrate sensing/signaling, and the regulatory networks underlying nitrate-controlled outputs in plants. We hope this summary will serve not only as a timeline and information repository but also as a baseline to define outstanding questions for future research.


Assuntos
Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Transportadores de Nitrato , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769138

RESUMO

LSUs (RESPONSE TO LOW SULFUR) are plant-specific proteins of unknown function that were initially identified during transcriptomic studies of the sulfur deficiency response in Arabidopsis. Recent functional studies have shown that LSUs are important hubs of protein interaction networks with potential roles in plant stress responses. In particular, LSU proteins have been reported to interact with members of the brassinosteroid, jasmonate signaling, and ethylene biosynthetic pathways, suggesting that LSUs may be involved in response to plant stress through modulation of phytohormones. Furthermore, in silico analysis of the promoter regions of LSU genes in Arabidopsis has revealed the presence of cis-regulatory elements that are potentially responsive to phytohormones such as ABA, auxin, and jasmonic acid, suggesting crosstalk between LSU proteins and phytohormones. In this review, we summarize current knowledge about the LSU gene family in plants and its potential role in phytohormone responses.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enxofre/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
6.
J Exp Bot ; 72(5): 1891-1905, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33188435

RESUMO

Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estresse Oxidativo , Fatores de Transcrição , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Reproduction ; 161(1): 43-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112288

RESUMO

During mating, males provide not only the spermatozoa to fertilize the oocyte but also other stimuli that are essential for initiating and maintaining the reproductive programme in females. In the mammalian oviduct, mating regulates sperm storage, egg transport, fertilization, early embryonic development, and oestradiol metabolism. However, the main molecules underlying these processes are poorly understood. Using microarray analyses, we identified 58 genes that were either induced or repressed by mating in the endosalpinx at 3 h post-stimulus. RT-qPCR confirmed that mating downregulated the expression of the Oas1h and Prim1 genes and upregulated the expression of the Ceacam1, Chad, Chst10, Slc5a3 and Slc26a4 genes. The functional category 'cell-to-cell signalling and interaction' was over-represented in this gene list. Network modelling identified TNF and all-trans retinoic acid (RA) as upstream regulators of the mating-induced transcriptional response, which was confirmed by intraoviductal injection of TNF or RA in unmated rats. It partially mimicked the transcriptional effect of mating in the rat endosalpinx. Furthermore, mating decreased RA levels in oviductal fluid, and RA-receptor-gamma (RARG) exhibited a nuclear location in oviductal epithelium in both unmated and mated rats, indicating RA-RARG transcriptional activity. In conclusion, the early transcriptional response regulated by mating in the rat endosalpinx is mediated by TNF and RA. These signalling molecules regulate a cohort of genes involved in 'cell-to-cell signalling and interactions' and merit further studies to understand the specific processes activated in the endosalpinx to sustain the events that occur in the mammalian oviduct early after mating.


Assuntos
Oviductos/metabolismo , Comportamento Sexual Animal/fisiologia , Transcriptoma , Tretinoína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Mucosa/metabolismo , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/metabolismo , Receptor gama de Ácido Retinoico
8.
BMC Plant Biol ; 20(1): 385, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831040

RESUMO

BACKGROUND: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sulfatos/metabolismo , Enxofre/deficiência , Enxofre/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
9.
Bioinformatics ; 33(5): 760-761, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993775

RESUMO

Summary: GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. Availability and Implementation: GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . Contact: genius.psbl@gmail.com. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Aprendizado de Máquina , Software , Arabidopsis/genética
10.
J Exp Bot ; 69(3): 619-631, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29309650

RESUMO

The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
11.
Plant Physiol ; 171(2): 1523-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208309

RESUMO

Development of crops with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. However, achieving this goal has proven difficult since NUE is a complex trait encompassing physiological and developmental processes. We thought to tackle this problem by taking a systems biology approach to identify candidate target genes. First, we used a supervised machine-learning algorithm to predict a NUE gene network in Arabidopsis (Arabidopsis thaliana). Second, we identified BT2, a member of the Bric-a-Brac/Tramtrack/Broad gene family, as the most central and connected gene in the NUE network. Third, we experimentally tested BT2 for a role in NUE. We found NUE decreased in plants overexpressing BT2 gene compared to wild-type plants under limiting nitrate conditions. In addition, NUE increased compared to wild-type plants under low nitrate conditions in double mutant plants in bt2 and its closely related homolog bt1, indicating a functional redundancy of BT1 and BT2 for NUE. Expression of the nitrate transporter genes NRT2.1 and NRT2.4 increased in the bt1/bt2 double mutant compared to wild-type plants, with a concomitant 65% increase in nitrate uptake under low nitrate conditions. Similar to Arabidopsis, we found that mutation of the BT1/BT2 ortholog gene in rice (Oryza sativa) OsBT increased NUE by 20% compared to wild-type rice plants under low nitrogen conditions. These results indicate BT gene family members act as conserved negative regulators of nitrate uptake genes and NUE in plants and highlight them as prime targets for future strategies to improve NUE in crops.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Nitratos/metabolismo , Nitrogênio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Proteínas de Membrana Transportadoras/metabolismo , Nitratos/farmacologia
12.
Plant Physiol ; 169(2): 1397-404, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26304850

RESUMO

Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca(2+) concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca(2+) levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca(2+) levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca(2+) channel blockers or phospholipase C inhibitors. These results indicate that Ca(2+) acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca(2+) in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Nitratos/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Cálcio/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Inositol 1,4,5-Trifosfato/metabolismo , Nitratos/farmacologia , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(31): 12840-5, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847199

RESUMO

Auxin is a key phytohormone regulating central processes in plants. Although the mechanism by which auxin triggers changes in gene expression is well understood, little is known about the specific role of the individual members of the TIR1/AFB auxin receptors, Aux/IAA repressors, and ARF transcription factors and/or molecular pathways acting downstream leading to plant responses to the environment. We previously reported a role for AFB3 in coordinating primary and lateral root growth to nitrate availability. In this work, we used an integrated genomics, bioinformatics, and molecular genetics approach to dissect regulatory networks acting downstream of AFB3 that are activated by nitrate in roots. We found that the NAC4 transcription factor is a key regulatory element controlling a nitrate-responsive network, and that nac4 mutants have altered lateral root growth but normal primary root growth in response to nitrate. This finding suggests that AFB3 is able to activate two independent pathways to control root system architecture. Our systems approach has unraveled key components of the AFB3 regulatory network leading to changes in lateral root growth in response to nitrate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Receptores de Superfície Celular/genética , Fatores de Transcrição/genética
14.
Plant J ; 80(1): 1-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039575

RESUMO

Nitrate acts as a potent signal to control global gene expression in Arabidopsis. Using an integrative bioinformatics approach we identified TGA1 and TGA4 as putative regulatory factors that mediate nitrate responses in Arabidopsis roots. We showed that both TGA1 and TGA4 mRNAs accumulate strongly after nitrate treatments in roots. Global gene expression analysis revealed 97% of the genes with altered expression in tga1 tga4 double mutant plants respond to nitrate treatments, indicating that these transcription factors have a specific role in nitrate responses in Arabidopsis root organs. We found TGA1 and TGA4 regulate the expression of nitrate transporter genes NRT2.1 and NRT2.2. Specific binding of TGA1 to its cognate DNA sequence on NRT2.1 and NRT2.2 promoters was confirmed by chromatin immunoprecipitation assays. The tga1 tga4 double mutant plants exhibit nitrate-dependent lateral and primary root phenotypes. Lateral root initiation is affected in both tga1 tga4 and nrt1.2 nrt2.2 double mutants, suggesting TGA1 and TGA4 regulate lateral root development at least partly via NRT2.1 and NRT2.2. Additional root phenotypes of tga1 tga4 double mutants indicate that these transcription factors play an important role in root developmental responses to nitrate. These results identify TGA1 and TGA4 as important regulatory factors of the nitrate response in Arabidopsis roots.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biologia Computacional , Redes Reguladoras de Genes , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Transcriptoma , Regulação para Cima
15.
J Exp Bot ; 65(19): 5611-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129132

RESUMO

Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Nitrogênio/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Redes Reguladoras de Genes , Germinação , Estágios do Ciclo de Vida , Transição de Fase , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
16.
BMC Genomics ; 14: 701, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119003

RESUMO

BACKGROUND: Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out. RESULTS: In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3. CONCLUSIONS: Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Nitratos/farmacologia , RNA de Plantas/metabolismo , Análise de Sequência de RNA/métodos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , Variação Genética/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poli A/metabolismo , RNA de Plantas/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
17.
Proc Natl Acad Sci U S A ; 107(9): 4477-82, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142497

RESUMO

One of the most striking examples of plant developmental plasticity to changing environmental conditions is the modulation of root system architecture (RSA) in response to nitrate supply. Despite the fundamental and applied significance of understanding this process, the molecular mechanisms behind nitrate-regulated changes in developmental programs are still largely unknown. Small RNAs (sRNAs) have emerged as master regulators of gene expression in plants and other organisms. To evaluate the role of sRNAs in the nitrate response, we sequenced sRNAs from control and nitrate-treated Arabidopsis seedlings using the 454 sequencing technology. miR393 was induced by nitrate in these experiments. miR393 targets transcripts that code for a basic helix-loop-helix (bHLH) transcription factor and for the auxin receptors TIR1, AFB1, AFB2, and AFB3. However, only AFB3 was regulated by nitrate in roots under our experimental conditions. Analysis of the expression of this miR393/AFB3 module, revealed an incoherent feed-forward mechanism that is induced by nitrate and repressed by N metabolites generated by nitrate reduction and assimilation. To understand the functional role of this N-regulatory module for plant development, we analyzed the RSA response to nitrate in AFB3 insertional mutant plants and in miR393 overexpressors. RSA analysis in these plants revealed that both primary and lateral root growth responses to nitrate were altered. Interestingly, regulation of RSA by nitrate was specifically mediated by AFB3, indicating that miR393/AFB3 is a unique N-responsive module that controls root system architecture in response to external and internal N availability in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Genes de Plantas
18.
Plants (Basel) ; 12(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36904036

RESUMO

Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.

19.
Front Immunol ; 14: 1264599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162669

RESUMO

Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , RNA/metabolismo , Mamíferos
20.
Plants (Basel) ; 11(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736678

RESUMO

LSU proteins belong to a plant-specific gene family initially characterized by their strong induction in response to sulfate (S) deficiency. In the last few years, LSUs have arisen as relevant hubs in protein-protein interaction networks, in which they play relevant roles in the response to abiotic and biotic stresses. Most of our knowledge on LSU genomic organization, expression and function comes from studies in Arabidopsis and tobacco, while little is known about the LSU gene repertoire and evolution of this family in land plants. In this work, a total of 270 LSU family members were identified using 134 land plant species with whole-genome sequences available. Phylogenetic analysis revealed that LSU genes belong to a Spermatophyta-specific gene family, and their homologs are distributed in three major groups, two for dicotyledons and one group for monocotyledons. Protein sequence analyses showed four new motifs that further support the subgroup classification by phylogenetic analyses. Moreover, we analyzed the expression of LSU genes in one representative species of each phylogenetic group (wheat, tomato and Arabidopsis) and found a conserved response to S deficiency, suggesting that these genes might play a key role in S stress responses. In summary, our results indicate that LSU genes belong to the Spermatophyta-specific gene family and their response to S deficiency is conserved in angiosperms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA