Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928363

RESUMO

The pyelonephritis-associated fimbria (P fimbria) is one of the most recognized adhesion determinants of extraintestinal pathogenic Escherichia coli strains (ExPECs). Twelve variants have been described for the gene encoding the P fimbria major structural subunit PapA and three variants for the gene encoding the adhesin subunit PapG. However, their distribution among the ExPEC diversity has not been comprehensively addressed. A complete landscape of that distribution might be valuable for delineating basic studies about the pathogenicity mechanisms of ExPECs and following up on the evolution of ExPEC lineages, particularly those most epidemiologically relevant. Therefore, we performed a massive descriptive study to detect the papA and papG variants along different E. coli genotypes represented by genomic sequences contained in the NCBI Assembly Refseq database. The most common papA variants were F11, F10, F48, F16, F12, and F7-2, which were found in significant association with the most relevant ExPEC genotypes, the phylogroups B2 and D, and the sequence types ST95, ST131, ST127, ST69, ST12, and ST73. On the other hand, the papGII variant was by far the most common followed by papGIII, and both were also found to have a significant association with common ExPEC genotypes. We noticed the presence of genomes, mainly belonging to the sequence type ST12, harboring two or three papA variants and two papG variants. Furthermore, the most common papA and papG variants were also detected in records representing strains isolated from humans and animals such as poultry, bovine, and dogs, supporting previous hypotheses of potential cross-transmission. Finally, we characterized a set of 17 genomes from Chilean uropathogenic E. coli strains and found that ST12 and ST73 were the predominant sequence types. Variants F7-1, F7-2, F8, F9, F11, F13, F14, F16, and F48 were detected for papA, and papGII and papGIII variants were detected for papG. Significant associations with the sequence types observed in the analysis of genomes contained in the NCBI Assembly Refseq database were also found in this collection in 16 of 19 cases for papA variants and 7 of 9 cases for the papG variants. This comprehensive characterization might support future basic studies about P fimbria-mediated ExPEC adherence and future typing or epidemiological studies to monitor the evolution of ExPECs producing P fimbria.


Assuntos
Escherichia coli Extraintestinal Patogênica , Genótipo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Humanos , Infecções por Escherichia coli/microbiologia , Adesinas de Escherichia coli/genética , Filogenia , Variação Genética , Proteínas de Fímbrias/genética , Proteínas de Escherichia coli/genética , Animais , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/classificação
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769094

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes gastroenteritis and Hemolytic Uremic Syndrome. Cattle are the main animal reservoir, excreting the bacteria in their feces and contaminating the environment. In addition, meat can be contaminated by releasing the intestinal content during slaughtering. Here, we evaluated the safety and immunogenicity of a vaccine candidate against STEC that was formulated with two chimeric proteins (Chi1 and Chi2), which contain epitopes of the OmpT, Cah and Hes proteins. Thirty pregnant cows in their third trimester of gestation were included and distributed into six groups (n = 5 per group): four groups were administered intramuscularly with three doses of the formulation containing 40 µg or 100 µg of each protein plus the Quil-A or Montanide™ Gel adjuvants, while two control groups were administered with placebos. No local or systemic adverse effects were observed during the study, and hematological parameters and values of blood biochemical indicators were similar among all groups. Furthermore, all vaccine formulations triggered systemic anti-Chi1/Chi2 IgG antibody levels that were significantly higher than the control groups. However, specific IgA levels were generally low and without significant differences among groups. Notably, anti-Chi1/Chi2 IgG antibody levels in the serum of newborn calves fed with colostrum from their immunized dams were significantly higher compared to newborn calves fed with colostrum from control cows, suggesting a passive immunization through colostrum. These results demonstrate that this vaccine is safe and immunogenic when applied to pregnant cows during the third trimester of gestation.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Vacinas de Subunidades Antigênicas , Animais , Bovinos , Feminino , Gravidez , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunização Passiva , Imunoglobulina G , Vacinas de Subunidades Antigênicas/efeitos adversos
3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012279

RESUMO

Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biomarcadores/metabolismo , Escherichia coli/metabolismo , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo
4.
Curr Microbiol ; 77(9): 2111-2117, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504321

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are zoonotic food pathogens associated with foodborne diarrheal illness, hemorrhagic colitis, and complications such as hemolytic uremic syndrome (HUS). The ability to adhere to epithelial cells is an important virulence trait, and pathogenicity islands (PAIs) play an important role on it. Some STEC carrying a PAI named locus of enterocyte effacement (LEE-positive) have been frequently associated to HUS; however, STEC that do not carry LEE (LEE-negative) have also been associated with this outcome. The burden of disease caused by LEE-negative STEC has increased recently in several countries like Argentina, Chile, and Paraguay. A new PAI -the Locus of Adhesion and Autoagregation (LAA)-has been associated to severe disease in humans. In this study, we aimed to analyze the distribution of LAA and its possible predictor, the gene hes, in LEE-negative STEC strains isolated from Chile and Paraguay from different sources. The presence of the different LAA modules and hes were detected by PCR. LAA was found in 41.6% and 41.0% of strains isolated from Chile and Paraguay, respectively. Strains were isolated from diverse origins and belonged to several serogroups including O91, O103, and O113. The hes gene was detected in 50% of the isolates from Paraguay and Chile. Therefore, the detection of LAA and hes in STEC could complement current genetic evaluation schemes, allowing to classify LEE negative STEC strains as LAA-positive or LAA-negative STEC strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Argentina , Chile , Proteínas de Escherichia coli/genética , Humanos , América Latina , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética
5.
Food Microbiol ; 85: 103280, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500706

RESUMO

Listeria monocytogenes causes severe diseases in humans, including febrile gastroenteritis and systemic infections that has a high mortality despite antibiotic treatment. This pathogen may cause massive outbreaks associated to the consumption of contaminated food products, which highlight its importance in public health. In the last decade, L. monocytogenes has emerged as a foodborne pathogen of major importance in Chile. A previous work showed that in Chile during 2008 and 2009, L. monocytogenes serotypes 1/2a, 1/2b and 4b were the most frequently identified in food and clinical strains. Here we report the molecular characterization of L. monocytogenes strains isolated from 2008 to 2017 in the country. Our results indicate that serotypes 1/2a, 1/2b and 4b continue to be the most commonly found in food products. In addition, we identify persistent and widespread PFGE subtypes. This study reports ten years of epidemiological surveillance ofL. monocytogenes in Chile.


Assuntos
Monitoramento Epidemiológico , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Listeria monocytogenes/genética , Listeriose/epidemiologia , Chile/epidemiologia , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Surtos de Doenças , Doenças Transmitidas por Alimentos/microbiologia , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Variação Genética , Humanos , Listeria monocytogenes/patogenicidade , Produtos da Carne/microbiologia , Epidemiologia Molecular , Saúde Pública , Sorogrupo , Sorotipagem , Fatores de Virulência/genética
6.
Anaerobe ; 58: 73-79, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31034928

RESUMO

Increased antibiotic usage is the main risk factor for gut microbiota dysbiosis. In dysbiosis, there is an increased susceptibility to intestinal pathogens, such as Clostridium difficile infection, the leading cause of hospital-acquired infection worldwide. High-spectrum antibiotics, such as vancomycin or metronidazole, also increases the risk of developing CDI symptoms after the treatment. An impaired immune response could also be responsible for the high incidence of recurrence of CDI (R-CDI), suggesting that immune system stimulation could help eradicate the infection in patients suffering multiple episodes in CDI or prevent the infective course. Here, we discuss novel immunotherapeutic approaches that aid the immune system to target C. difficile and how these can be improved.


Assuntos
Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/terapia , Imunoterapia/métodos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Pesquisa Biomédica/tendências , Humanos
7.
Microb Pathog ; 123: 259-263, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30009972

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens that can cause severe disease. The ability to adhere to epithelial cells is an important virulence trait and pathogenicity islands (PAIs) play an important role. Recently, researchers identified a member of the Heat-resistant agglutinin family and characterized this antigen named Hemagglutinin from Shiga toxin-producing E. coli (Hes). More importantly, they showed that hes and other genes such as iha, pagC and agn43 were integrated in each of the four modules present in the new PAI named Locus of Adhesion and Autoaggregation (LAA) whose presence is associated with severe disease linked to with LEE-negatives STEC. The distribution of LAA among STEC strains isolates from different origins between 2000 and 2015 from cattle, the farm environment, and food and harboring diverse virulence was investigated. The STEC strains were characterized by PCR to detect three modules of LAA and agn43 (as marker of module IV), and phylogenetic groups were determined. LAA was found in 46% of LEE-negative STEC corresponding to serogroups O91, O174, O113, O171, O178, O130 and others. The presence of this PAI is associated with strains harboring stx2 (56%) and belonging to phylogroup B1 (91%). LAA is a novel pathogenicity island associated with strains isolated from Hemolytic Uremic Syndrome cases. Therefore, the results of this study contribute to a better understanding regarding the pathogenicity of this emergent subset of STEC strains harboring LAA as a predictor of virulence of LEE-negative STEC strains.


Assuntos
Proteínas de Escherichia coli/genética , Ilhas Genômicas/genética , Fosfoproteínas/genética , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Adesinas de Escherichia coli/genética , Animais , Animais Domésticos , Argentina , Proteínas de Bactérias/genética , Bovinos , Análise por Conglomerados , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Marcadores Genéticos , Genoma Bacteriano , Hemaglutininas , Filogenia , Toxina Shiga I/genética , Toxina Shiga II/genética , Virulência
8.
Molecules ; 23(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029513

RESUMO

A rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics and reducing the therapeutic arsenal available for treatment of infectious diseases. In the present study, we developed a new class of compounds with antibacterial activity obtained by a simple, two step synthesis and screened the products for in vitro antibacterial activity against ATCC® strains using the broth microdilution method. The compounds exhibited minimum inhibitory concentrations (MIC) of 1⁻32 µg/mL against Gram-positive ATCC® strains. The structure⁻activity relationship indicated that the thiophenol ring is essential for antibacterial activity and the substituents on the thiophenol ring module, for antibacterial activity. The most promising compounds detected by screening were tested against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) clinical isolates. We found remarkable activity against VREF for compounds 7 and 16, were the MIC50/90 were 2/4 µg/mL and 4/4 µg/mL, respectively, while for vancomycin the MIC50/90 was 256/512 µg/mL. Neither compound affected cell viability in any of the mammalian cell lines at any of the concentrations tested. These in vitro data show that compounds 7 and 16 have an interesting potential to be developed as new antibacterial drugs against infections caused by VREF.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Fenômenos Químicos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Difração de Raios X
9.
Rev Med Chil ; 145(9): 1129-1136, 2017 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-29424399

RESUMO

BACKGROUND: Different strains of invasive Escherichia coli (E. coli), isolated from intestinal mucosa of patients, are related to the pathogenesis of inflammatory bowel diseases (IBD). AIM: To evaluate an association between intracellular E. coli and IBD; its clinical characteristics and use of steroids. MATERIAL AND METHODS: Sixty one patients with Crohn's disease and 83 with ulcerative colitis were studied. To determine the intracellular E. coli content, colonoscopy biopsies of these patients and 29 control subjects were processed using the gentamicin protection assay. Differences in the bacterial content between patient groups were evaluated using Mann-Whitney test, while the association between presence of E. coli with endoscopic activity, location/extension and use of corticosteroid as anti-inflammatory treatment were evaluated with Fisher's exact test or Chi-square test. RESULTS: E. coli strains were detected in 36.1, 39.3 and 10.3% of patients with ulcerative colitis, Crohn's disease and controls, respectively. The number of bacteria per biopsy in Crohn's disease and ulcerative colitis was significantly higher than in controls (p < 0.01 between patients and controls). In ulcerative colitis, significant associations were found between the presence of bacteria and disease location and use of corticosteroids. In Crohn's disease, no association was found. CONCLUSIONS: IBD are associated with the presence of intracellular E. coli strains in the intestinal mucosa, suggesting an alteration in the microbiota or loss of integrity of the epithelial barrier. The association of intracellular E. coli with clinical features and the use of corticosteroids in ulcerative colitis suggests that different factors could promote colonization or proliferation of these bacteria.


Assuntos
Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Escherichia coli/isolamento & purificação , Mucosa Intestinal/microbiologia , Adolescente , Corticosteroides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios/uso terapêutico , Estudos de Casos e Controles , Colite Ulcerativa/tratamento farmacológico , Contagem de Colônia Microbiana , Doença de Crohn/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Valores de Referência , Estatísticas não Paramétricas , Adulto Jovem
10.
Curr Opin Infect Dis ; 29(5): 528-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27479024

RESUMO

PURPOSE OF REVIEW: The gut microbiome is critical for human health, and its alteration is associated with intestinal, autoimmune and metabolic diseases. Numerous studies have focused on prevention or treatment of dysbiotic microbiome to reduce the risk or effect of these diseases. A key issue is to define the microbiome associated with the state of good health. The purpose of this review is to describe factors influencing the gut microbiome with special emphasis on contributions from Latin America. In addition, we will highlight opportunities for future studies on gut microbiome in Latin America. RECENT FINDINGS: A relevant factor influencing gut microbiome composition is geographical location associated with specific genetic, dietary and lifestyle factors. Geographical specificities suggest that a universal 'healthy microbiome' is unlikely. SUMMARY: Several research programs, mostly from Europe and North America, are extensively sequencing gut microbiome of healthy people, whereas data from Latin America remain scarce yet slowly increasing. Few studies have shown difference in the composition of gut microbiome between their local populations with that of other industrialized countries (North American populations). Latin America is composed of countries with a myriad of lifestyles, traditions, genetic backgrounds and socioeconomic conditions, which may determine differences in gut microbiome of individuals from different countries. This represents an opportunity to better understand the relationship between these factors and gut microbiome.


Assuntos
Disbiose , Microbioma Gastrointestinal , Estilo de Vida , Humanos , Doenças Inflamatórias Intestinais , América Latina , Obesidade
11.
Infect Immun ; 83(5): 1893-903, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712927

RESUMO

Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.


Assuntos
Adesinas Bacterianas/genética , Adesinas de Escherichia coli/genética , Aderência Bacteriana , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/fisiologia , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Animais , Células CACO-2 , Pré-Escolar , Chile , Elementos de DNA Transponíveis , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Mutagênese Insercional
12.
Infect Immun ; 82(11): 4767-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156722

RESUMO

Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Escherichia coli Shiga Toxigênica/metabolismo , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Imunoglobulina A , Imunoglobulina G , Escherichia coli Shiga Toxigênica/genética
13.
Int J Med Microbiol ; 304(3-4): 384-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24581881

RESUMO

Crohn's disease (CD) is a multifactorial pathology associated with the presence of adherent-invasive Escherichia coli (AIEC) and NLRP3 polymorphic variants. The presence of intracellular E. coli in other intestinal pathologies (OIP) and the role of NLRP3-inflammasome in the immune response activated by these bacteria have not been investigated. In this study, we sought to characterize intracellular strains isolated from patients with CD, ulcerative colitis (UC) and OIP, and analyze NLRP3-inflammasome role in the immune response and bactericidal activity induced in macrophages exposed to invasive bacteria. For this, intracellular E. coli isolation from ileal biopsies, using gentamicin-protection assay, revealed a prevalence and CFU/biopsy of E. coli higher in biopsies from CD, UC and OIP patients than in controls. To characterize bacterial isolates, pulsed-field gel electrophoresis (PFGE) patterns, virulence genes, serogroup and phylogenetic group were analyzed. We found out that bacteria isolated from a given patient were closely related and shared virulence factors; however, strains from different patients were genetically heterogeneous. AIEC characteristics in isolated strains, such as invasive and replicative properties, were assessed in epithelial cells and macrophages, respectively. Some strains from CD and UC demonstrated AIEC properties, but not strains from OIP. Furthermore, the role of NLRP3 in pro-inflammatory cytokines production and bacterial elimination was determined in macrophages. E. coli strains induced IL-1ß through NLRP3-dependent mechanism; however, their elimination by macrophages was independent of NLRP3. Invasiveness of intracellular E. coli strains into the intestinal mucosa and IL-1ß production may contribute to CD and UC pathogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Macrófagos/microbiologia , Viabilidade Microbiana , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carga Bacteriana , Biópsia , Linhagem Celular , Citosol/microbiologia , Células Epiteliais/microbiologia , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Feminino , Genótipo , Humanos , Íleo/microbiologia , Íleo/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fatores de Virulência/genética , Adulto Jovem
14.
Vet Res Commun ; 48(3): 1821-1830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263503

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are recognized as being responsible for many cases of foodborne diseases worldwide. Cattle are the main reservoir of STEC, shedding the microorganisms in their feces. The serogroup STEC O91 has been associated with hemorrhagic colitis and hemolytic uremic syndrome. Locus of Adhesion and Autoaggregation (LAA) and its hes gene are related to the pathogenicity of STEC and the ability to form biofilms. Considering the frequent isolation of STEC O91, the biofilm-forming ability, and the possible role of hes in the pathogenicity of STEC, we propose to evaluate the ability of STEC to form biofilms and to evaluate the expression of hes before and after of biofilm formation. All strains were classified as strong biofilm-forming. The hes expression showed variability between strains before and after biofilm formation, and this may be due to other genes carried by each strain. This study is the first to report the relationship between biofilm formation, and hes expression and proposes that the analysis and diagnosis of LAA, especially hes as STEC O91 virulence factors, could elucidate these unknown mechanisms. Considering that there is no specific treatment for HUS, only supportive care, it is necessary to know the survival and virulence mechanisms of STEC O91.


Assuntos
Biofilmes , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Biofilmes/crescimento & desenvolvimento , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/fisiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Animais , Bovinos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Transcrição Gênica
15.
Microb Cell ; 11: 116-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799407

RESUMO

Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of Streptococcus sp., Limosilactobacillus, Blautia, Escherichia, Bacteroides, Megamonas, and Roseburia was higher in the DEC group than in healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.

16.
Microorganisms ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985253

RESUMO

Anastomotic leakage (AL) is a major cause of morbidity and mortality after colorectal surgery, but the mechanism behind this complication is still not fully understood. Despite the advances in surgical techniques and perioperative care, the complication rates have remained steady. Recently, it has been suggested that colon microbiota may be involved in the development of complications after colorectal surgery. The aim of this study was to evaluate the association of gut microbiota in the development of colorectal AL and their possible virulence strategies to better understand the phenomenon. Using 16S rRNA sequencing of samples collected on the day of surgery and the sixth day following surgery, we analyzed the changes in tissue-associated microbiota at anastomotic sites created in a model of rats with ischemic colon resection. We discovered a trend for lower microbial diversity in the AL group compared to non-leak anastomosis (NLA). There were no differences in relative abundance in the different types of microbial respiration between these groups and the high abundance of the facultative anaerobic Gemella palaticanis is a marker species that stands out as a distinctive feature.

17.
AIDS ; 37(3): 367-378, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695354

RESUMO

Immune performance following antiretroviral therapy initiation varies among patients. Despite achieving viral undetectability, a subgroup of patients fails to restore CD4+ T-cell counts during follow-up, which exposes them to non-AIDS defining comorbidities and increased mortality. Unfortunately, its mechanisms are incompletely understood, and no specific treatment is available. In this review, we address some of the pathophysiological aspects of the poor immune response from a translational perspective, with emphasis in the interaction between gut microbiome, intestinal epithelial dysfunction, and immune system, and we also discuss some studies attempting to improve immune performance by intervening in this vicious cycle.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Contagem de Linfócito CD4 , Disbiose , Linfócitos T CD4-Positivos , Comorbidade , Terapia Antirretroviral de Alta Atividade
18.
Foods ; 12(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509768

RESUMO

The objective of this work was to molecularly and genotypically characterize and test the inhibitory activity of six colicinogenic Escherichia coli strains (ColEc) and their partially purified colicins against STEC O157:H7 isolated from clinical human cases. Inhibition tests demonstrated the activity of these strains and their colicins against STEC O157:H7. By PCR it was possible to detect colicins Ia, E7, and B and microcins M, H47, C7, and J25. By genome sequencing of two selected ColEc strains, it was possible to identify additional colicins such as E1 and Ib. No genes coding for stx1 and stx2 were detected after analyzing the genome sequence. The inhibitory activity of ColEc against STEC O157:H7 used as an indicator showed that colicins are potent growth inhibitors of E. coli O157:H7, being a potential alternative to reduce the presence of pathogens of public health relevance.

19.
BMC Res Notes ; 16(1): 163, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550739

RESUMO

OBJECTIVES: Shiga toxin-producing Escherichia coli strains LAA-positive are important cause of human infection. The capability to adhere to epithelial cells is a key virulence trait, and genes codified in LAA pathogenicity island could be involved in the adhesion during the pathogenesis of LAA-positive STEC strains. Thus, our objectives were to compare hes-negative and hes-positive STEC strains in their adherence capability to epithelial cells (HEp-2) and to evaluate the expression levels of the hes, iha, and tpsA in the bacteria adhered and non-adhered to HEp-2 cells. These genes are encoded in LAA, and are virulence factors that participate in adhesion and autoaggregation. RESULTS: We could not observe differences between the adhesion of strains but also in the expression level of of hes, iha, and tpsA. Genes encoded in LAA contribute to the adhesion phenotype though the expression of STEC adhesins is a coordinated event that depends not only the strain but also on the environment as well as its genetic background. Therefore, the results of this study suggest that LAA ,the most prevalent PAI among LEE-negative STEC strains, plays a role in pathogenesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Adesinas Bacterianas/genética , Células Epiteliais/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Linhagem Celular
20.
Front Med (Lausanne) ; 10: 1155751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215733

RESUMO

Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA