Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Stem Cells ; 38(8): 1007-1019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352186

RESUMO

Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow-derived MSCs expanded under xenogeneic-free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4- and 6-fold, respectively) after a 14-day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg-like phenotype proliferate. These MSC-induced Treg-like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC-induced Treg-like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD-1 is higher in Treg-like cells than in Tcon, whereas the frequency of PDL-1 increases in MSCs after coculture. TGF-ß levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg-like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF-ß and/or PD-1/PDL-1 expression. This MSC-induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.


Assuntos
Linfócitos T CD4-Positivos/citologia , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/citologia , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Humanos , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/metabolismo
2.
Immunohorizons ; 5(5): 307-321, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980663

RESUMO

Regulatory T cell (Treg) infusion for graft-versus-host disease treatment has been increasingly investigated. However, polyclonal Treg may suppress the desired graft-versus-leukemia effect. Although allogeneic-specific (allo-specific) Treg may provide a more-targeted graft-versus-host disease treatment, there is the need to develop easily translatable expansion protocols and to better characterize their specificity and mechanisms of suppression. In this article, we provide a robust protocol for human allo-specific Treg expansion and characterize their phenotype, potency, and specificity of suppression by testing different expansion conditions and suppression assay milieus. We found that higher concentrations of IL-2 during expansion with allogeneic APC yielded allo-specific Treg that were more-potent suppressors and displayed a more activated phenotype. Although responses to the same APC present during expansion were the most suppressed, responses to third-party APC partially matched to the expansion APC were still significantly more suppressed than responses to fully mismatched APC. Furthermore, suppression of responses to the expansion APC was strictly contact dependent, whereas suppression of responses to mismatched APC was partially independent of contact. Finally, distinct subsets in fresh and expanded Treg could be described using multidimensional visualization techniques. We propose that allo-specific Treg are HLA specific and that the mechanisms of suppression elicited depend on their compatibility with the stimulators.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Antígenos HLA/imunologia , Linfócitos T Reguladores/imunologia , Técnicas de Cocultura , Doença Enxerto-Hospedeiro/etiologia , Teste de Histocompatibilidade , Humanos , Transplante Homólogo
3.
Front Immunol ; 9: 2540, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455694

RESUMO

Human regulatory CD4+CD25+FOXP3+ T cells (Treg) play important roles in the maintenance of self-tolerance and immune homeostasis in various disease settings and are also involved in the suppression of effective immune responses. These cells are heterogeneous in phenotype and function, and the ability to reliably distinguish between various FOXP3-expressing subpopulations can affect the development of successful therapies. This study demonstrates that hypomethylated CpG sites, present in four regions of the FOXP3 locus, CAMTA1 and FUT7 gene regions, can be used to distinguish several subsets of Treg from conventional CD4+ T lymphocytes (Tcon) in donors of both genders. We describe a previously unreported strand-bias hemimethylation pattern in FOXP3 promoter and TSDR in donors of both genders, with the coding strand being demethylated within promoter and methylated within TSDR in all CD4+ lymphocyte subtypes, whereas the template strand follows the previously described pattern of methylation with both regions being more demethylated in Treg subtypes and mostly methylated in Tcon. This strand-specific approach within the TSDR may prove to be instrumental in correctly defining Treg subsets in health and in disease.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Fatores de Transcrição Forkhead/genética , Fucosiltransferases/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transativadores/genética , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Citometria de Fluxo , Marcadores Genéticos/genética , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia , Masculino , Regiões Promotoras Genéticas/genética , Subpopulações de Linfócitos T/citologia , Linfócitos T Reguladores/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA