RESUMO
INTRODUCTION: Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN: To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS: We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS: L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-ß and IL-10 levels in lungs, and concomitant decreased IL-1ß, IL-17 A, and CXCL1 production. CONCLUSION: Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.
Assuntos
Aspergillus fumigatus , Citocinas , Lactobacillus delbrueckii , Pulmão , Camundongos Endogâmicos BALB C , Probióticos , Animais , Probióticos/administração & dosagem , Aspergillus fumigatus/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Administração Oral , Lactobacillus delbrueckii/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Camundongos , Aspergilose/imunologia , Aspergilose/prevenção & controle , Linfócitos T Reguladores/imunologia , Imunoglobulina A/imunologia , Feminino , Líquido da Lavagem Broncoalveolar/imunologia , Aspergilose Pulmonar/imunologia , Fezes/microbiologia , MasculinoRESUMO
Production of nitric oxide (NO) by LPS-activated macrophages is due to a complex cellular signaling initiated by TLR4 that leads to the transcription of IFN-ß, which activates IRF-1 and STAT-1, as well as to the activation of NF-κB, required for iNOS transcription. High concentrations of LPS can also be uptaken by scavenger receptors (SRs), which, in concert with TLR4, leads to inflammatory responses. The mechanisms by which TLR4 and SRs interact, and the pathways activated by this interaction in macrophages are not elucidated. Therefore, our main goal was to evaluate the role of SRs, particularly SR-A, in LPS-stimulated macrophages for NO production. We first showed that, surprisingly, LPS can induce the expression of iNOS and the production of NO in TLR4-/- mice, provided exogenous IFN-ß is supplied. These results indicate that LPS stimulate receptors other than TLR4. The inhibition of SR-A using DSS or neutralizing antibody to SR-AI showed that SR-A is essential for the expression of iNOS and NO production in stimulation of TLR4 by LPS. The restoration of the ability to express iNOS and produce NO by addition of rIFN-ß to inhibited SR-A cells indicated that the role of SR-AI in LPS-induced NO production is to provide IFN-ß, probably by mediating the internalization of LPS/TLR4, and the differential inhibition by DSS and neutralizing antibody to SR-AI suggested that other SRs are also involved. Our results reinforce that TLR4 and SR-A act in concert in LPS activation and demonstrated that, for the production of NO, it does mainly by synthesizing IRF-3 and also by activating the TRIF/IRF-3 pathway for IFN-ß production, essential for LPS-mediated transcription of iNOS. Consequently STAT-1 is activated, and IRF-1 is expressed, which together with NF-κB from TLR4/MyD88/TIRAP, induce iNOS synthesis and NO production. SUMMARY SENTENCE: TLR4 and SRs act in concert activating IRF-3 to transcribe IFN-ß and activate STAT-1 to produce NO by LPS-activated macrophages.
Assuntos
NF-kappa B , Óxido Nítrico , Camundongos , Animais , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Receptores Depuradores/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1008379.].
RESUMO
Chagas Disease (CD) is one of the leading causes of heart failure and sudden death in Latin America. Treatments with antioxidants have provided promising alternatives to ameliorate CD. However, the specific roles of major reactive oxygen species (ROS) sources, including NADPH-oxidase 2 (NOX2), mitochondrial-derived ROS and nitric oxide (NO) in the progression or resolution of CD are yet to be elucidated. We used C57BL/6 (WT) and a gp91PHOX knockout mice (PHOX-/-), lacking functional NOX2, to investigate the effects of ablation of NOX2-derived ROS production on the outcome of acute chagasic cardiomyopathy. Infected PHOX-/- cardiomyocytes displayed an overall pro-arrhythmic phenotype, notably with higher arrhythmia incidence on ECG that was followed by higher number of early afterdepolarizations (EAD) and 2.5-fold increase in action potential (AP) duration alternans, compared to AP from infected WT mice. Furthermore, infected PHOX-/- cardiomyocytes display increased diastolic [Ca2+], aberrant Ca2+ transient and reduced Ca2+ transient amplitude. Cardiomyocyte contraction is reduced in infected WT and PHOX-/- mice, to a similar extent. Nevertheless, only infected PHOX-/- isolated cardiomyocytes displayed significant increase in non-triggered extra contractions (appearing in ~75% of cells). Electro-mechanical remodeling of infected PHOX-/-cardiomyocytes is associated with increase in NO and mitochondria-derived ROS production. Notably, EADs, AP duration alternans and in vivo arrhythmias were reverted by pre-incubation with nitric oxide synthase inhibitor L-NAME. Overall our data show for the first time that lack of NOX2-derived ROS promoted a pro-arrhythmic phenotype in the heart, in which the crosstalk between ROS and NO could play an important role in regulating cardiomyocyte electro-mechanical function during acute CD. Future studies designed to evaluate the potential role of NOX2-derived ROS in the chronic phase of CD could open new and more specific therapeutic strategies to treat CD and prevent deaths due to heart complications.
Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cardiomiopatia Chagásica/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença Aguda , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismoRESUMO
OBJECTIVE: To evaluate the effect(s) of mineral trioxide aggregate (MTA) on in vitro RANKL-mediated osteoclast-dependent bone resorption events and the influence of Ca2+ and Al3+ on the osteoclastogenesis inhibition by MTA. MATERIALS AND METHODS: Two types of osteoclast precursors, RAW 264.7 (RAW) cell line or bone marrow cells (obtained from BALB/c mice and stimulated with recombinant (r) macrophage colony stimulation factor (M-CSF), were stimulated with or without recombinant (r) activator of nuclear kappa B ligand (RANKL), in the presence or absence of MTA for 6 to 8 days. White Angelus MTA and Bios MTA (Angelus, Londrina, Paraná, Brazil) were prepared and inserted into capillary tubes (direct contact surface = 0.50 mm2 and 0.01 mm2). Influence of MTA on these types of osteoclast precursors was measured by the number of differentiated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (RAW and bone marrow cells), TRAP enzyme activity (RAW cells), cathepsin K gene expression (RAW cells), and resorptive pit formation (RAW cells) by mature osteoclasts. Besides, RAW cells were also stimulated with Ca2+ and Al3+ to evaluate the influence of these ions on MTA anti-osteoclastogenic potential. RESULTS: In bone marrow and RAW cells, the number of TRAP-positive mature osteoclast cells induced by rRANKL was significantly inhibited by the presence of MTA compared with control rRANKL stimulation without MTA (p < 0.05), along with the reduction of TRAP enzyme activity (p < 0.05) and the low expression of cathepsin K gene (p < 0.05). In contrast, to control mature osteoclasts, the resorption area on dentin was significantly decreased for mature osteoclasts incubated with MTA (p < 0.05). rRANKL-stimulated RAW cells treated with Ca2+ and Al3+ decreased the number of osteoclasts cells. Besides, the aluminum oxide was the dominant suppressor of the osteoclastogenesis process. CONCLUSIONS: MTA significantly suppressed RANKL-mediated osteoclastogenesis and osteoclast activity and, therefore, appears able to suppress bone resorption events in periapical lesions. This process might be related to Ca2+ and Al3+ activities. CLINICAL RELEVANCE: MTA is an important worldwidely acknowleged biomaterial. The knowledge about its molecular activities on osteoclasts might contribute to improving the understanding of its clinical efficacy.
Assuntos
Reabsorção Óssea , Osteoclastos , Alumínio/farmacologia , Compostos de Alumínio , Animais , Brasil , Cálcio , Compostos de Cálcio , Diferenciação Celular , Combinação de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese , Óxidos , Ligante RANK/farmacologia , SilicatosRESUMO
OBJECTIVES: To evaluate the selenium (Se) behavior when used as an endodontic dressing in teeth with pulp necrosis. Additionally, its effects was also compared with the calcium hydroxide (C.H.), which is used globally as a root canal dressing, and the combination of the C.H. with Se (C.H. + Se). MATERIALS AND METHODS: The sample consisted of 60 patients requiring endodontic treatment who were divided into groups, i.e., without intracanal medication (empty) and with medications as follows: selenium (Se), calcium hydroxide (C.H.), and calcium hydroxide + selenium (C.H. + Se) (n = 15). After the coronary opening, three absorbent paper points were placed in the RCS and maintained for 2 min for microbial evaluation. Following the cleaning and shaping procedures, new paper points were introduced into the root canal system, passing passively through the root apex (2 mm) into the periapical tissues for 2 min, for immune evaluation. The collections were performed again 15 days later. Real-time PCR quantified the expression of the prokaryotic 16S ribosomal RNA. The 16S mRNA was evaluated before the cleaning and shaping procedures and 15 days later in the groups treated with or without medication. RESULTS: A significant reduction in the microbial load was observed only in the groups that received endodontic dressing (p < 0.05). The cytokines IFN-γ, TNF-α, IL-1α, IL-17A, IL-10, IL-6 and MCP-1, were also quantified by real-time PCR. There was an increase in the gene expression level of the cytokines (T15) TNF-α and IL-10 in the C.H. group compared to the other groups (p < 0.05). The IFN-γ mRNA expression was reduced in the groups treated with the medications (Se, C.H., and C.H. + Se). CONCLUSIONS: The findings of the present study indicate that in the case of treatment over multiple sessions, the use of root canal dressing is essential to avoid the root canal system (RCS) microbial recolonization. Selenium potentiated the effects of calcium hydroxide inducing an anti-inflammatory response in periapical tissues. CLINICAL RELEVANCE: Se is a mineral essential for the formation of the amino acid selenocysteine, which is directly involved in the maintenance of the immune response. Selenium has been widely used in the medical field in the treatment of cancer, as an activator of bone metabolism, and as a stimulator of the immune system. In this study, it was shown that the incorporation of Se, whether as intracanal medication alone or in conjunction with other medications, may potentiate periapical tissue repair after RCS cleaning and shaping procedures.
Assuntos
Periodontite Periapical , Selênio , Bandagens , Hidróxido de Cálcio/farmacologia , Cavidade Pulpar , Necrose da Polpa Dentária , Humanos , Imunidade , Periodontite Periapical/terapia , Tecido Periapical , Irrigantes do Canal Radicular , Selênio/farmacologiaRESUMO
OBJECTIVES: To evaluate the mRNA expression levels of cytokines interferon-γ, tumour necrosis factor-α, interleukin IL-1ß, IL-10, and the chemokine CCL2/MCP-1, CCL4, and CXCR4 in the periapical interstitial fluid from root canal infections before and after bacterial load reduction in patients undergoing haematopoietic stem cell transplantation (HSCT). MATERIALS AND METHODS: The case group was composed of 10 patients undergoing HSCT, and our control group included 10 healthy patients. Clinical samples were taken from teeth with pulp necrosis. Three paper points were placed in the RCS and maintained for 2 min for microbial evaluation before cleaning and shaping procedures. After cleaning and drying the canal, three paper points were introduced into the root canal, passing passively through the root apex (2 mm) into the periapical tissues for 1 min. Samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize gene expression using real-time PCR. RESULTS: The results showed significantly reduction in the microbial load on day 7. An increased expression level of TNF-α and IFN-γ on day 7 in control and case groups was observed (p < 0.05). The mRNA levels of IL-1ß and IL-10 in the pre-HSCT group increased in the samples from day 7 (p < 0.05). The chemokine CCL-2/MCP-1 was not detected in pre-HSCT group. Chemokine receptor CXCR4 levels increased in samples obtained from the day 7 in the control group (p < 0.05). CONCLUSIONS: Individuals undergoing HSTC presented similar cytokine and chemokine mRNA expression compared with healthy individuals. However, it was observed the total absence of mRNA MCP-1/CCL2 expression in those individuals undergoing HSCT. CLINICAL RELEVANCE: Patients undergoing HSCT are at higher risk of infection. No study has analysed the periapical immune responses to root canal infections in HSCT individuals.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Periodontite Periapical , Citocinas , Necrose da Polpa Dentária , Humanos , Periodontite Periapical/terapia , Tecido Periapical , Tratamento do Canal RadicularRESUMO
OBJECTIVES: To identify the gene expression of the cytokines IL-9, TNF-α, IL-1, INF-γ, IL-17A, and IL-10 and the chemokines CCL-2/MCP-1 and CCR-6 in the periapical fluid of human root canal infections. MATERIALS AND METHODS: Twenty samples were collected immediately and 7 days after the cleaning and shaping procedures (after reducing the intracanal microbial load) in an attempt to characterize the expression of these genes. The endogenous expression levels of cytokines and chemokines were analyzed by real-time polymerase chain reaction. The Shapiro-Wilk and the Wilcoxon tests analyzed data. RESULTS: Significantly higher levels of the IL-9, INF-γ, TNF-α, IL-1, and IL-10 markers on day 7 were observed compared with day 0 (p < 0.05). However, IL-17A and the chemokines CCL-2/MCP-1 and CCR-6 did not show a significant difference in mRNA expression when comparing both timepoints (p > 0.05). CONCLUSIONS: The clinical variation of the periapical immune status after endodontic therapy suggests that the cytokine and chemokine-mediated pro-inflammatory response appears to be modulated in an IL-10/IL-9-dependent manner. CLINICAL RELEVANCE: Few studies have investigated the role of Th9 cells in periapical lesions. IL-9 presents exciting plasticity, performing immunosuppressive actions, and it is also capable of changing their phenotype in the presence of IL-17. Hence, it is relevant to investigate its role in the context of the known mediators involved the periapical immune process.
Assuntos
Expressão Gênica , Quimiocinas , Citocinas , Humanos , Tratamento do Canal Radicular , Fator de Necrose Tumoral alfaRESUMO
Reactive oxygen species (ROS) are produced by NADPH oxidase (NOX), an enzyme that reduces oxygen by using NADPH as a substrate. Apocynin (APO) is a catechol that is used as a NOX inhibitor, and N-acetyl-cysteine ââ(NAC) can reduce intracellular ROS levels. In this work, the effect of APO and NAC on osteoclast formation were evaluated. APO and NAC significantly decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive cells and the osteoclast area. We analyzed bone-marrow derived monocyte-macrophages (BMMs) that differentiated into osteoclasts after RANKL stimulation. Stimulation was associated with either APO or NAC treatment and osteoclastogenesis marker expression, including NFATc1, MMP-9, and DC-STAMP, was evaluated. APO decreased the intracellular calcium concentration by calcium channels other than ITPR1 and TPC2. On the other hand, APO reduced Tnfrsf11a (RANK) expression and did not alter Fam102a (EEIG1) expression. Therefore, our results demonstrate that APO inhibits osteoclastogenesis by the RANK-RANKL-related signaling pathways, decreases osteoclast markers, and reduces intracellular calcium concentration.
Assuntos
Acetofenonas/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Acetofenonas/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fatores de Transcrição NFATC , Proteínas do Tecido Nervoso , Osteoclastos/metabolismo , Osteogênese/fisiologia , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismoRESUMO
Leishmania (Viannia) guyanensis is one species that causes cutaneous leishmaniasis in the New World. The incidence of infections with this parasite is probably underestimated and few studies exist on this species, despite its epidemiological importance. In particular, there are no studies concerning L. guyanensis metacyclogenesis and no technique for obtaining metacyclic promastigotes for this species is presently available. Here, we have studied L. guyanensis metacyclogenesis in axenic culture, describing the main changes that occur during this process, namely, in morphology and size, sensitivity to complement-mediated lysis, surface carbohydrates and infectivity to macrophages. We have shown that metacyclogenesis in L. guyanensis promastigotes is basically complete on the 4th day of culture, as determined by decreased body size, increased flagellum length, resistance to complement-mediated lysis and infectivity. We have also found that only a fraction of the parasites is agglutinated by Bauhinia purpurea lectin. The non-agglutinated parasites, which also peaked on the 4th day of culture, had all morphological traits typical of the metacyclic stage. This is the first report describing metacyclogenesis in L. guyanensis axenic promastigotes and a simple and efficient method for the purification of metacyclic forms. Furthermore, a model of human macrophage infection with L. guyanensis was established.
RESUMO
Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.
Assuntos
Catalase/metabolismo , Estresse Oxidativo , Transdução de Sinais , Trypanosoma cruzi/metabolismo , Animais , Catalase/genética , Linhagem Celular , Doença de Chagas/parasitologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , NADH NADPH Oxirredutases/metabolismo , Rhodnius/parasitologia , Superóxido Dismutase/metabolismo , Transfecção , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidadeRESUMO
AIM: To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. METHODOLOGY: Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. RESULTS: FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. CONCLUSION: Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity.
Assuntos
Compostos de Alumínio/toxicidade , Compostos de Cálcio/toxicidade , Macrófagos/efeitos dos fármacos , Óxidos/toxicidade , Materiais Restauradores do Canal Radicular/toxicidade , Silicatos/toxicidade , Animais , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Combinação de Medicamentos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Saccharomyces boulardiiRESUMO
OBJECTIVE: Interleukin-4 (IL-4) is a multifunctional cytokine involved in many diseases such as autoimmune hepatitis and idiosyncratic drug reactions. However, its role in acetaminophen (APAP)-induced liver injury remains unclear. Our objective was to evaluate the contribution of IL-4 to the pathogenesis of APAP-induced liver injury. METHODS: Balb/C (WT) and IL-4 knockout (IL-4(-/-)) mice were orally overdosed with APAP. After 24 h, survival percentage, biochemical and morphological markers of liver injury, and tissue inflammation were assessed. RESULTS: IL-4(-/-) mice were protected from APAP toxicity. Intravital confocal microscopy, tissue histology and serum ALT levels showed significantly less liver injury and inflammation than in the WT group, which may explain the increased survival rate of IL-4(-/-) mice. In addition, IL-4(-/-) mice had decreased production of tumor necrosis factor α, CXCL1 and interleukin-1ß in the liver, but not in a remote site such as the lungs. Hepatic macrophage activation was markedly reduced in IL-4-deficient mice. In addition, glutathione depletion-a primary cause of APAP-mediated injury-was significantly attenuated in IL-4(-/-) mice. CONCLUSIONS: Taken together, our data demonstrate that IL-4(-/-) mice are protected from APAP-induced liver injury due to reduced depletion of glutathione, which prevented liver damage and tissue inflammation.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Glutationa/imunologia , Interleucina-4/imunologia , Acetaminofen , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CXCL1/imunologia , Inflamação/imunologia , Interleucina-4/genética , Fígado/imunologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator de Necrose Tumoral alfa/imunologiaRESUMO
BACKGROUND: The interleukin 32 (IL-32) is a proinflammatory cytokine produced by immune and non-immune cells. It can be induced during bacterial and viral infections, but its production was never investigated in protozoan infections. American Tegumentary Leishmaniasis (ATL) is caused by Leishmania protozoan leading to cutaneous, nasal or oral lesions. The aim of this study was to evaluate the expression of IL-32 in cutaneous and mucosal lesions as well as in peripheral blood mononuclear cells (PBMC) exposed to Leishmania (Viannia) braziliensis. METHODS: IL-32, tumour necrosis factor (TNF) and IL-10 protein expression was evaluated by immunohistochemistry in cutaneous, mucosal lesions and compared to healthy specimens. The isoforms of IL-32α, ß, δ, γ mRNA, TNF mRNA and IL-10 mRNA were assessed by qPCR in tissue biopsies of lesions and healthy skin and mucosa. In addition, PBMC from healthy donors were cultured with amastigotes of L. (V.) braziliensis. In lesions, the parasite subgenus was identified by PCR-RFLP. RESULTS: We showed that the mRNA expression of IL-32, in particular IL-32γ was similarly up-regulated in lesions of cutaneous (CL) or mucosal (ML) leishmaniasis patients. IL-32 protein was produced by epithelial, endothelial, mononuclear cells and giant cells. The IL-32 protein expression was associated with TNF in ML but not in CL. IL-32 was not associated with IL-10 in both CL and ML. Expression of TNF mRNA was higher in ML than in CL lesions, however levels of IL-10 mRNA were similar in both clinical forms. In all lesions in which the parasite was detected, L. (Viannia) subgenus was identified. Interestingly, L. (V.) braziliensis induced only IL-32γ mRNA expression in PBMC from healthy individuals. CONCLUSIONS: These data suggest that IL-32 plays a major role in the inflammatory process caused by L. (Viannia) sp or that IL-32 is crucial for controlling the L. (Viannia) sp infection.
Assuntos
Interleucina-10/biossíntese , Interleucinas/biossíntese , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Interleucinas/genética , Leishmaniose Cutânea/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/metabolismo , Pele/metabolismo , Regulação para Cima , Adulto JovemRESUMO
Obesity is a global pandemic associated with several comorbidities, such as cardiovascular diseases and type 2 diabetes. It is also a predisposing factor for infectious diseases, increasing mortality rates. Moreover, diet-induced obesity can cause metabolic fluctuations that affect macrophage differentiation in various organs. In this sense, we investigated how bone marrow-derived macrophages and tissue-resident macrophages in the skin, which have been differentiated in a host with metabolic syndrome and with previous inflammatory burden, respond to Leishmania major infection. Our findings suggest that bone marrow-derived macrophages from obese C57BL/6 mice, even when cultivated in vitro with inflammatory stimuli, are more susceptible to L. major. These macrophages produce less tumor necrosing factor (TNF) and nitric oxide (NO) and show higher arginase activity. Furthermore, obese mice infected with an intermediate dose of L. major in the skin had more severe lesions when analyzed for ulceration, diameter, thickness, and parasite burden. The increase in lesion severity in obese mice was associated with a higher frequency of tissue-resident macrophages, which are less efficient in killing parasites. We also used CCR2-/- mice, which predominantly have tissue-resident macrophages, and found that lesion resolution was delayed in association with CCR2 deficiency. Additionally, obesity potentiated tissue damage, resulting in higher frequency of tissue-resident macrophages. Our results demonstrate that obesity can alter macrophage responses to infection, leading to increased susceptibility to L. major and more severe cutaneous leishmaniasis. These findings may have important implications for managing obesity-related infections and the development of new therapies for cutaneous leishmaniasis.
RESUMO
Leishmania major-infected TNF receptor 1 deficient (TNFR1 KO) mice resolve parasitism but fail to resolve lesions, while wild-type mice completely heal. We investigated the cell composition, cytokine production, and apoptosis in lesions from L. major-infected TNFR1 KO and wild-type (WT) mice. Chronic lesions from L. major-infected TNFR1 KO mice presented larger number of CD8+ T and Ly6G+ cells. In addition, higher concentrations of mRNA for IFN-γ CCL2 and CCL5, as well as protein, but lower numbers of apoptotic cells, were found in lesions from TNFR1 KO mice than in WT, at late time points of infection. Our studies showed that persistent lesions in L. major-infected TNFR1 KO mice may be mediated by continuous migration of cells to the site of inflammation due to the presence of chemokines and also by lower levels of apoptosis. We suggest that this model has some striking similarities to the mucocutaneous clinical form of leishmaniasis.
Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Animais , Apoptose/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Parasitária , Receptores Tipo I de Fatores de Necrose Tumoral/genéticaRESUMO
Objectives: This study aimed to evaluate in vitro the effects of the self-adhesive resin cements RelyX U200 (3M ESPE) and seT PP (SDI Limited) on murine macrophages and the interference of the photoactivation. Materials and Methods: Cell viability assays, cell adherence, yeast phagocytosis of Saccharomyces boulardii and production of reactive oxygen species (ROS) were performed in the presence of capillaries containing the respective self-adhesive cement when photoactivated or not. Results: After long periods of contact, both types of cements, when not photoactivated, are more cytotoxic for macrophages. The seT PP cement when only chemically activated seems to interfere more negatively in the process of phagocytosis of yeasts S. boulardii. Both types of cements interfere in the cell adhesion process, independent of photoactivation. None of the types of cements tested was able to induce the production of ROS. Conclusions: Our results highlight the great importance of the photoactivation of self-adhesive resin cements in the dental clinic, since RelyX U200, when photoactivated, presented the best results within the evaluated parameters.
RESUMO
An endodontic material must be minimally harmful to stem cells since they are essential, thanks to their capacity for cell proliferation, self-renewal, and differentiation. For this reason, in this in vitro study, the cell viability and the expression of genes involved in cell plasticity and differentiation were investigated in stem cells recovered from human dental pulp (hDPSCs) that were in contact with four endodontic materials (Endofill, MTA, Pulp Canal Sealer, and Sealer 26). The viability of HDPSCs was assessed by MTT and trypan blue exclusion assays. PCR evaluated cellular plasticity by determining the CD34, CD45, Nestin, CD105, Nanog, and OCT4 expressions. The effect on cell differentiation was determined by RT-PCR expression of the RUNX2, ALP, OC/BGLAP, and DMP1 genes. The data were analyzed using ANOVA with Bonferroni correction (p <0.05). Pulp Canal Sealer and Endofill decreased cell viability after 48 hours (p <0.001). MTA and Sealer 26 did not disrupt cell viability (p> 0.05). When cultivated in the presence of MTA and Sealer 26, hDPSCs expressed Nestin, CD105, NANOG, and OCT-4 and did not express CD34 and CD45. MTA and Sealer 26 interfered with DMP1, OC/BGLAP and RUNX2 expressions (p <0.05) but did not change ALP gene expression (p> 0.05). MTA and Sealer 26 showed biological compatibility in the presence of hDPSCs.
Assuntos
Células-Tronco Mesenquimais , Materiais Restauradores do Canal Radicular , Humanos , Compostos de Cálcio/farmacologia , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Polpa Dentária/metabolismo , Nestina/metabolismo , Silicatos/farmacologiaRESUMO
In the present study, we investigated the protective effects of Lactobacillus delbrueckii UFV-H2b20 on the resistance to Listeria monocytogenes infection in gnotobiotic mice. Germfree mice or monoassociated mice were infected with L. monocytogenes, and the microbiological and immunological responses were evaluated after 1, 3, and 5 days of infection. Monoassociation with L. delbrueckii was capable of protecting mice against death caused by L. monocytogenes and induced a faster clearance of the bacteria in the liver, spleen, and peritoneal cavity at days 1, 3, and 5 post-infection. Also, monoassociated mice displayed less liver injury than germfree mice. The production of TNF-α in the serum, peritoneal cavity, and gut was augmented in monoassociated mice. Likewise, the levels of IFN-γ found on supernatants of spleen cells cultures were higher after the monoassociation. In addition, increased production of nitric oxide in peritoneal cell cultures supernatants and in serum was observed in mice that received L. delbrueckii. The monoassociation with L. delbrueckii induced higher production of IL-10 in the mucosal immune system. We conclude that monoassociation with L. delbrueckii UFV-H2b20 protects mice from death caused by L. monocytogenes infection by favoring effector responses while preventing their immunopathological consequences.
Assuntos
Antibiose , Imunidade nas Mucosas , Lactobacillus delbrueckii/imunologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/imunologia , Listeriose/prevenção & controle , Probióticos , Animais , Vida Livre de Germes , Interferon gama/metabolismo , Interleucina-10 , Lactobacillus delbrueckii/fisiologia , Listeriose/mortalidade , Fígado/microbiologia , Camundongos , Óxido Nítrico/metabolismo , Cavidade Peritoneal/microbiologia , Baço/microbiologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.