Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurochem ; 145(2): 125-138, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29292502

RESUMO

Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme-coated microelectrodes and the risk for light-induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme-coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson's disease, has recently proven opotogenetically targetable in Pitx2-Cre-transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2-eYFP constructs into the STN, amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi-step analysis approach based on self-referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate-based approaches in neuroscience.


Assuntos
Globo Pálido/metabolismo , Ácido Glutâmico/análise , Optogenética/métodos , Animais , Camundongos , Camundongos Transgênicos , Microeletrodos , Optogenética/instrumentação
2.
Hippocampus ; 23(5): 323-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23460368

RESUMO

The precise temporal and spatial activity patterns of neurons in cortical networks are organized by different state-dependent types of network oscillations. GABAergic inhibition plays a key role in the underlying mechanisms of such oscillations and it has been suggested that the duration of widely distributed phasic inhibitory postsynaptic potentials (IPSPs) determines the frequency of the resulting network oscillation. Here, we test this hypothesis in an in vitro model of sharp wave-ripple (SPW-R) complexes, a particularly fast pattern of network oscillations at ∼200 Hz which is involved in memory consolidation. We recorded SPW-R in mouse hippocampal slices in the absence and presence of NCC-711, an inhibitor of GABA uptake. The resulting prolongation of IPSP resulted in reduced occurrence of SPW-R, whereas the superimposed fast oscillations as well as the precision of rhythmic cell synchronization remained stable. Application of Diazepam which is a positive modulator of the GABAA receptor led to consistent results. We conclude that phasic inhibition is a major regulator of network excitability in CA3 (where SPW-Rs are generated), but does not set the frequency of hippocampal ripples.


Assuntos
Potenciais Evocados/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Oximas/farmacologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Diazepam/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Análise de Fourier , Moduladores GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Fatores de Tempo
3.
J Neurosci Methods ; 334: 108597, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31987912

RESUMO

Scientific investigations, in general, and research in neuroscience, in particular, are becoming ever more complex and require the integration of different techniques. Behavioral assays, which are among the most frequently used methodologies in neuroscience, nowadays rely on advanced, sophisticated technologies that require proficient application. Therefore, behavioral core facilities are becoming essential support units, as they provide the specialized expert research services needed to conduct advanced neuroscience. We here review the lessons learned and insights gathered from managing behavioral core facilities in different academic research institutes. This review addresses several issues, including: the advantages of behavioral core facilities, considerations for establishing a behavioral core facility, and the methodological advances made through calibration and standardization of assay protocols and the development of new assays. Collectively, the review highlights the benefits of both working within and collaborating with behavioral core facility units and emphasizes the potential progress in neuro-phenotyping that such facilities provide.

4.
Cell Rep ; 18(11): 2584-2591, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297663

RESUMO

Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.


Assuntos
Comportamento Animal , Condicionamento Psicológico , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Animais , Camundongos Knockout , Neostriado/metabolismo , Optogenética , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Sci Rep ; 6: 35203, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762319

RESUMO

The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Peptídeo Liberador de Gastrina/genética , Doença de Parkinson/genética , Parte Compacta da Substância Negra/metabolismo , Canais de Cátion TRPV/genética , Área Tegmentar Ventral/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Optogenética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/patologia , Transmissão Sináptica , Canais de Cátion TRPV/metabolismo , Área Tegmentar Ventral/patologia , Ácido gama-Aminobutírico/metabolismo
6.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27699212

RESUMO

The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.


Assuntos
Sacarose Alimentar , Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/patologia , Proteína Vesicular 2 de Transporte de Glutamato/deficiência , Animais , Morte Celular/fisiologia , Condicionamento Operante/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Sacarose Alimentar/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação/fisiologia , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/metabolismo , Autoadministração , Fatores de Transcrição/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Homeobox PITX2
7.
Brain Struct Funct ; 220(4): 2171-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24802380

RESUMO

Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations ("TH-Vglut2 Class1") also expressed the dopamine transporter (DAT) gene while one did not ("TH-Vglut2 Class2"), and the remaining population did not express TH at all ("Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area.


Assuntos
Hipocampo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Neurônios/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/deficiência , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Eletroquímica , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Técnicas de Patch-Clamp , Regiões Promotoras Genéticas/fisiologia , Sinapsinas/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
8.
PLoS One ; 9(6): e99592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24925086

RESUMO

The dorsal striatum is the main input structure of the basal ganglia and the major target area of dopaminergic projections originating in the substantia nigra pars compacta. Heavily involved in the regulation of voluntary movement and habit formation, this structure is of strong importance in Parkinson's disease, obsessive-compulsive disorder, Tourette's syndrome and addiction. The C57/Bl6J mouse strain, the most commonly used strain in preclinical research today, is frequently used as a model organism for analysis of dopaminergic parameters implicated in human pathophysiology. Several components of the dopamine system have been shown to vary with age and sex, however knowledge of the contribution of these factors for dopamine release kinetics in the C57/Bl6J mouse strain is lacking. In the present study, we used an intracranial KCl-stimulation challenge paradigm to provoke release from dopaminergic terminals in the dorsal striatum of anaesthetized C57/Bl6J mice. By high-speed in vivo chronoamperometric recordings, we analyzed DA release parameters in male and female mice of two different ages. Our experiments demonstrate elevated DA amplitudes in adult compared to young mice of both sexes and higher DA amplitudes in females compared to males at both ages. Adult mice exhibited higher recovery capabilities after repeated stimulation than did young mice and also showed a lower variability in the kinetic parameters trise and t80 between stimulations. These results identified age- and sex- dimorphisms in DA release parameters and point to the importance of taking these dimorphisms into account when utilizing the C57/Bl6J mouse strain as model for neurological and neuropsychiatric disorders.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Fatores Etários , Envelhecimento/psicologia , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA