Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38632902

RESUMO

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Assuntos
Dissulfetos , Estresse Oxidativo , PPAR gama , Tirosina/análogos & derivados , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Poríferos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Glutationa/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
World J Microbiol Biotechnol ; 40(5): 148, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539025

RESUMO

Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) is the main causal agent of chestnut brown rot on sweet chestnut worldwide. The rotting of nuts leads to alterations in the organoleptic qualities and decreased fruit production, resulting in significant economic losses. In 2021, there was an important outbreak of chestnut rot in southern Galicia (Spanish northwest). The profile of secondary metabolites from G. smithogilvyi was studied, especially to determine its capability for producing mycotoxins, as happens with other rotting fungi, due to the possible consequences on the safety of chestnut consumption. Secondary metabolites produced by isolates of G. smithogilvyi growing in potato dextrose agar (PDA) medium were identified using liquid chromatography coupled with high-resolution mass spectrometry. Three metabolites with interesting pharmacological and phyto-toxicological properties were identified based on their exact mass and fragmentation patterns, namely adenosine, oxasetin, and phytosphingosine. The capacity of G. smithogilvyi to produce adenosine in PDA cultures was assessed, finding concentrations ranging from 176 to 834 µg/kg. Similarly, the production of mycotoxins was ruled out, indicating that the consumption of chestnuts with necrotic lesions does not pose a health risk to the consumer in terms of mycotoxins.


Assuntos
Ascomicetos , Micotoxinas , Nozes , Adenosina , Meios de Cultura
3.
Chem Res Toxicol ; 36(12): 1990-2000, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37965843

RESUMO

Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.


Assuntos
Ciguatoxinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Ciguatoxinas/farmacologia , Toxinas Marinhas/farmacologia
4.
Mar Drugs ; 20(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323497

RESUMO

Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.


Assuntos
Toxinas Marinhas , Microalgas , Poluentes da Água , Animais , Mudança Climática , Humanos , Toxinas Marinhas/análise , Toxinas Marinhas/uso terapêutico , Toxinas Marinhas/toxicidade , Poluentes da Água/análise , Poluentes da Água/uso terapêutico , Poluentes da Água/toxicidade
5.
Arch Toxicol ; 95(8): 2797-2813, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148100

RESUMO

The consumption of contaminated shellfish with okadaic acid (OA) group of toxins leads to diarrhoeic shellfish poisoning (DSP) characterized by a set of symptoms including nausea, vomiting and diarrhoea. These phycotoxins are Ser/Thr phosphatase inhibitors, which produce hyperphosphorylation in cellular proteins. However, this inhibition does not fully explain the symptomatology reported and other targets could be relevant to the toxicity. Previous studies have indicated a feasible involvement of the nervous system. We performed a set of in vivo approaches to elucidate whether neuropeptide Y (NPY), Peptide YY (PYY) or serotonin (5-HT) was implicated in the early OA-induced diarrhoea. Fasted Swiss female mice were administered NPY, PYY(3-36) or cyproheptadine intraperitoneal prior to oral OA treatment (250 µg/kg). A non-significant delay in diarrhoea onset was observed for NPY (107 µg/kg) and PYY(3-36) (1 mg/kg) pre-treatment. On the contrary, the serotonin antagonist cyproheptadine was able to block (10 mg/kg) or delay (0.1 and 1 mg/kg) diarrhoea onset suggesting a role of 5-HT. This is the first report of the possible involvement of serotonin in OA-induced poisoning.


Assuntos
Diarreia/etiologia , Ácido Okadáico/toxicidade , Serotonina/metabolismo , Animais , Ciproeptadina/farmacologia , Inibidores Enzimáticos/toxicidade , Feminino , Camundongos , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Antagonistas da Serotonina/farmacologia , Intoxicação por Frutos do Mar/fisiopatologia , Fatores de Tempo
6.
Cell Physiol Biochem ; 49(2): 743-757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176657

RESUMO

BACKGROUND/AIMS: Okadaic acid (OA) and the structurally related compounds dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine phycotoxins that cause diarrheic shellfish poisoning (DSP) in humans due to ingestion of contaminated shellfish. In order to guarantee consumer protection, the regulatory authorities have defined the maximum level of DSP toxins as 160 µg OA equivalent kg-1 shellfish meat. For risk assessment and overall toxicity determination, knowledge of the relative toxicities of each analogue is required. In absence of enough information from human intoxications, oral toxicity in mice is the most reliable data for establishing Toxicity Equivalence Factors (TEFs). METHODS: Toxins were administered to mice by gavage, after that the symptomatology and mice mortality was registered over a period of 24 h. Organ damage data were collected at necropsy and transmission electron microscopy (TEM) was used for ultrastructural studies. Toxins in urine, feces and blood were analyzed by HPLC-MS/MS. The evaluation of in vitro potencies of OA, DTX1 and DTX2 was performed by the protein phosphatase 2A (PP2A) inhibition assay. RESULTS: Mice that received DSP toxins by gavage showed diarrhea as the main symptom. Those toxins caused similar gastrointestinal alterations as well as intestine ultrastructural changes. However, DSP toxins did not modify tight junctions to trigger diarrhea. They had different toxicokinetics and toxic potency. The lethal dose 50 (LD50) was 487 µg kg-1 bw for DTX1, 760 µg kg-1 bw for OA and 2262 µg kg-1 bw for DTX2. Therefore, the oral TEF values are: OA = 1, DTX1 = 1.5 and DTX2 = 0.3. CONCLUSION: This is the first comparative study of DSP toxins performed with accurate well-characterized standards and based on acute toxicity data. Results confirmed that DTX1 is more toxic than OA by oral route while DTX2 is less toxic. Hence, the current TEFs based on intraperitoneal toxicity should be modified. Also, the generally accepted toxic mode of action of this group of toxins needs to be reevaluated.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácido Okadáico/toxicidade , Piranos/toxicidade , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Coração/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Miocárdio/ultraestrutura , Ácido Okadáico/análise , Ácido Okadáico/urina , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Piranos/análise , Piranos/urina , Estômago/efeitos dos fármacos , Estômago/patologia , Espectrometria de Massas em Tandem , Testes de Toxicidade
7.
Cell Physiol Biochem ; 43(1): 136-146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848202

RESUMO

BACKGROUND: Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. METHODS: The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. CONCLUSION: After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells.


Assuntos
Toxinas Marinhas/farmacologia , Permeabilidade/efeitos dos fármacos , Compostos de Espiro/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Células CACO-2 , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Dinoflagellida/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Toxinas Marinhas/farmacocinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Ocludina/metabolismo , Compostos de Espiro/farmacocinética
8.
Arch Toxicol ; 90(2): 479-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25572188

RESUMO

Although voltage-gated sodium channels (Na v ) are the cellular target of paralytic shellfish poisoning (PSP) toxins and that patch clamp electrophysiology is the most effective way of studying direct interaction of molecules with these channels, nowadays, this technique is still reduced to more specific analysis due to the difficulties of transforming it in a reliable throughput system. Actual functional methods for PSP detection are based in binding assays using receptors but not functional Na v channels. Currently, the availability of automated patch clamp platforms and also of stably transfected cell lines with human Na v channels allow us to introduce this specific and selective method for fast screenings in marine toxin detection. Taking advantage of the accessibility to pure PSP standards, we calculated the toxicity equivalent factors (TEFs) for nine PSP analogs obtaining reliable TEFs in human targets to fulfill the deficiencies of the official analytic methods and to verify automated patch clamp technology as a fast and reliable screening method for marine toxins that interact with the sodium channel. The main observation of this work was the large variation of TEFs depending on the channel subtype selected, being remarkable the variation of potency in the 1.7 channel subtype and the suitability of Na v 1.6 and 1.2 channels for PSP screening.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Toxinas Marinhas/toxicidade , Técnicas de Patch-Clamp/métodos , Intoxicação por Frutos do Mar , Canais de Sódio/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Canais de Sódio/genética
9.
Mar Drugs ; 14(2)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26828502

RESUMO

Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton or activation of different cellular death types have been published as consequence of YTX exposure. This review summarizes the main intracellular pathways modulated by YTX and their pharmacological and therapeutic implications.


Assuntos
Dinoflagellida/metabolismo , Oxocinas/isolamento & purificação , Frutos do Mar/análise , Animais , Morte Celular/efeitos dos fármacos , Humanos , Venenos de Moluscos , Oxocinas/farmacologia , Oxocinas/toxicidade , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Chem Res Toxicol ; 28(6): 1095-108, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25945403

RESUMO

Ciguatera is a human global disease caused by the consumption of contaminated fish that have accumulated ciguatoxins (CTXs), sodium channel activator toxins. Symptoms of ciguatera include neurological alterations such as paraesthesiae, dysaesthesiae, depression, and heightened nociperception, among others. An important issue to understand these long-term neurological alterations is to establish the role that changes in activity produced by CTX 3C represent to neurons. Here, the effects of synthetic ciguatoxin CTX 3C on membrane potential, spontaneous spiking, and properties of synaptic transmission in cultured cortical neurons of 11-18 days in vitro (DIV) were evaluated using electrophysiological approaches. CTX 3C induced a large depolarization that decreased neuronal firing and caused a rapid inward tonic current that was primarily GABAergic. Moreover, the toxin enhanced the amplitude of miniature postsynaptic inhibitory currents (mIPSCs), whereas it decreased the amplitude of miniature postsynaptic excitatory currents (mEPSCs). The frequency of mIPSCs increased, whereas the frequency of mEPSCs remained unaltered. We describe, for the first time, that a rapid membrane depolarization caused by CTX 3C in cortical neurons activates mechanisms that tend to suppress electrical activity by shifting the balance between excitatory and inhibitory synaptic transmission toward inhibition. Indeed, these results suggest that the acute effects of CTX on synaptic transmission could underlie some of the neurological symptoms caused by ciguatera in humans.


Assuntos
Ciguatoxinas/toxicidade , Neurônios/efeitos dos fármacos , Animais , Ciguatoxinas/síntese química , Ciguatoxinas/química , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Neurônios/metabolismo , Neurônios/patologia , Relação Estrutura-Atividade
11.
Chem Res Toxicol ; 28(6): 1109-19, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25945544

RESUMO

Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin. These findings identify an unanticipated role for ciguatoxin in the regulation of homeostatic plasticity in central neurons involving NaV channels and raise the possibility that some of the neurological symptoms of ciguatera might be explained by these compensatory mechanisms.


Assuntos
Córtex Cerebral/citologia , Ciguatoxinas/toxicidade , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Ciguatoxinas/administração & dosagem , Relação Dose-Resposta a Droga , Camundongos , Neurônios/metabolismo , Relação Estrutura-Atividade , Sinapses/metabolismo
12.
Mar Drugs ; 13(8): 4633-53, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26225985

RESUMO

The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.


Assuntos
Fatores Biológicos/farmacologia , Citoproteção/efeitos dos fármacos , Metalotioneína/metabolismo , Pirimidinas/farmacologia , Alcaloides/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crambe (Esponja)/metabolismo , Fase G1/efeitos dos fármacos , Células Hep G2 , Humanos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
13.
Chem Res Toxicol ; 27(8): 1387-400, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24999537

RESUMO

Ciguatoxins (CTXs) and maitotoxins (MTXs) are polyether ladder shaped toxins derived from the dinoflagellate Gambierdiscus toxicus. Despite the fact that MTXs are 3 times larger than CTXs, part of the structure of MTXs resembles that of CTXs. To date, the synthetic ciguatoxin, CTX 3C has been reported to activate voltage-gated sodium channels, whereas the main effect of MTX is inducing calcium influx into the cell leading to cell death. However, there is a lack of information regarding the effects of these toxins in a common cellular model. Here, in order to have an overview of the main effects of these toxins in mice cortical neurons, we examined the effects of MTX and the synthetic ciguatoxin CTX 3C on the main voltage dependent ion channels in neurons, sodium, potassium, and calcium channels as well as on membrane potential, cytosolic calcium concentration ([Ca(2+)]c), intracellular pH (pHi), and neuronal viability. Regarding voltage-gated ion channels, neither CTX 3C nor MTX affected voltage-gated calcium or potassium channels, but while CTX 3C had a large effect on voltage-gated sodium channels (VGSC) by shifting the activation and inactivation curves to more hyperpolarized potentials and decreasing peak sodium channel amplitude, MTX, at 5 nM, had no effect on VGSC activation and inactivation but decreased peak sodium current amplitude. Other major differences between both toxins were the massive calcium influx and intracellular acidification produced by MTX but not by CTX 3C. Indeed, the novel finding that MTX produces acidosis supports a pathway recently described in which MTX produces calcium influx via the sodium-hydrogen exchanger (NHX). For the first time, we found that VGSC blockers partially blocked the MTX-induced calcium influx, intracellular acidification, and protected against the short-term MTX-induced cytotoxicity. The results presented here provide the first report that shows the comparative effects of two prototypical ciguatera toxins, CTX 3C and MTX, in a neuronal model. We hypothesize that the analogies and differences in the bioactivity of these two toxins, produced by the same microorganism, may be strongly linked to their chemical structure.


Assuntos
Ciguatoxinas/toxicidade , Toxinas Marinhas/toxicidade , Neurônios/efeitos dos fármacos , Oxocinas/toxicidade , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciguatoxinas/química , Concentração de Íons de Hidrogênio , Toxinas Marinhas/química , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oxocinas/química , Técnicas de Patch-Clamp , Canais de Sódio/química , Canais de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
14.
Chem Res Toxicol ; 27(10): 1696-706, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25285689

RESUMO

Hapalindoles make up a large group of bioactive metabolites of the cyanobacterial order Stigonematales. 12-epi-Hapalindole E isonitrile, 12-epi-hapalindole C isonitrile, 12-epi-hapalindole J isonitrile, and hapalindole L from Fischerella are acutely toxic for insect larvae; however, the biochemical targets responsible for the biological activities of hapalindoles are not understood. We describe here the electron impact mass spectra of these four hapalindole congeners; their structures were confirmed by nuclear magnetic resonance spectroscopy. In combination with the presented mass spectra of (15)N-labeled species and their retention times on a gas chromatography capillary column, a rapid and reliable determination should be possible in future research. The bioactivity of these hapalindoles was tested on mammalian cells focusing on their effects in the BE(2)-M17 excitable human neuroblastoma cell line. The fluorescent dye Alamar Blue was applied to monitor cytotoxicity, fura-2 to evaluate changes in the cytosolic calcium concentrations, and bis-oxonol to detect effects on membrane potential. Data showed that the hapalindoles did not affect cell viability of the neuroblastoma cells, even when they were incubated for 72 h. Neither depolarization nor initiation of calcium influx was observed in the cells upon hapalindole treatment. However, the data provide evidence that hapalindoles are sodium channel-modulating neurotoxins. They inhibited veratridine-induced depolarization in a manner similar to that of neosaxitoxin. Our data suggest hapalindoles should be added to the growing number of neurotoxic secondary metabolites, such as saxitoxins and anatoxins, already known in freshwater cyanobacteria. As stable congeners, hapalindoles may be a risk in freshwater ecosystems or agricultural water usage and should therefore be considered in water quality assessment.


Assuntos
Cianobactérias/química , Alcaloides Indólicos/química , Canais de Sódio/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cianobactérias/metabolismo , Fura-2/química , Fura-2/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Alcaloides Indólicos/toxicidade , Espectroscopia de Ressonância Magnética , Potenciais da Membrana/efeitos dos fármacos , Isótopos de Nitrogênio/química , Ratos , Saxitoxina/análogos & derivados , Saxitoxina/toxicidade , Canais de Sódio/química
15.
J Agric Food Chem ; 72(26): 14975-14983, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898562

RESUMO

Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.


Assuntos
Cálcio , Depsipeptídeos , Mitocôndrias , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , Humanos , Depsipeptídeos/farmacologia , Micotoxinas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Linhagem Celular Tumoral
16.
Mycotoxin Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017819

RESUMO

Yogurt, a milk-derived product, is susceptible to mycotoxin contamination. While various methods have been developed for the analysis of dairy products, only a few have been specifically validated for yogurt. In addition, these methods are primarily focus on detecting aflatoxins and zearalenone. This study aimed to conduct a preliminary investigation into the presence of regulated, emerging, and modified mycotoxins in natural and oat yogurts available in the Spanish market. For this, a QuEChERS-based extraction method was optimized and then validated to detect and quantify 32 mycotoxins using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method was in-house validated for the analysis of natural and oat yogurt in terms of linearity, matrix effect, sensitivity, accuracy, and precision. Satisfactory performance characteristics were achieved; for most of the analytes, LOQs were lower than 2 ng/g, and recoveries ranged from 60 to 110% with a precision, expressed as the relative standard deviation of the recovery, lower than 15%. Subsequently, the validated method was applied to analyze commercial yogurt samples, revealing a notable incidence of beauvericin and enniatins, with some analogues found in up to 100% of the samples. Alternariol methyl ether was also frequently found, appearing in 50% of the samples. Additionally, the study identified regulated toxins such as fumonisins, ochratoxin A , and HT-2 toxin. These results provide new incidence data in yogurt, raising concerns about potential health risks for consumers.

17.
Food Chem ; 456: 140004, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870813

RESUMO

Natural toxins, such as mycotoxins and cyanotoxins, can contaminate food and feed, leading to toxicity in humans and animals. This study focused on using nine magnetic nanostructured agents to remove the main types of toxins. Initially, the efficacy of these materials was evaluated in water solutions, revealing that composites with sizes below 3 mm, containing magnetite, activated carbon, esterified pectin, and sodium alginate, removed up to 90% of mycotoxins and cyanotoxins with an adsorption of 873 ng/g. The application of the nanostructures was then assessed in beer, milk, Distillers Dried Grains with Solubles and water contaminated with cyanobacteria. The presence of matrix slightly decreases the adsorption capacity for some toxins. The maximum toxin removal capacity was calculated with cyanotoxins, composites achieved a removal of up to 0.12 mg/g, while nanocomposites (15 µm) reached 36.6 mg/g. Therefore, these findings point out the potential for using nanotechnology in addressing natural toxins contamination.


Assuntos
Contaminação de Alimentos , Micotoxinas , Nanoestruturas , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Micotoxinas/química , Micotoxinas/análise , Adsorção , Nanoestruturas/química , Animais , Cadeia Alimentar , Cerveja/análise , Leite/química , Toxinas Bacterianas/química , Cianobactérias/química , Microcistinas/química , Microcistinas/análise
18.
Chem Res Toxicol ; 26(1): 169-78, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23270282

RESUMO

Crambescins and crambescidins are two families of guanidine alkaloids from the marine sponge Crambe crambe. Although very little information about their biological effect has been reported, it is known that crambescidin 816 (Cramb816) blocks calcium channels in a neuroblastoma X glioma cell line. Taking this into account, and the fact that ion channels are frequent targets for natural toxins, we examined the effect of Cramb816 and three compounds from the crambescin family, norcrambescin A2 (NcrambA2), crambescin A2 (CrambA2), and crambescin C1 (CrambC1), in the main voltage-dependent ion channels in neurons: sodium, potassium, and calcium channels. Electrophysiological recordings of voltage gated sodium, potassium, and calcium currents, in the presence of these guanidine alkaloids, were performed in cortical neurons from embryonic mice. Different effects were discovered: crambescins inhibited K(+) currents with the following potency: NcrambA2 > CrambC1 > CrambA2, while Cramb816 lacked an effect. Only CrambC1 and Cramb816 partially blocked Na(+) total current. However, Cramb816 partially blocked Ca(2+) , while NcrambA2 did not. Since the blocking effect of Cramb816 on calcium currents has not been previously reported in detail, we further pharmacologically isolated the two main fractions of HVA Ca(2+) channels in neurons and investigated the Cramb816 effect on them. Here, we revealed that Cav1 or L-type calcium channels are the main target for Cramb816. These two families of guanidine alkaloids clearly showed a structure-activity relationship with the crambescins acting on voltage-gated potassium channels, while Cramb816 blocks the voltage-gated calcium channel Cav1 with higher potency than nifedipine. The novel evidence that Cramb816 partially blocked CaV and NaV channels in neurons suggests that this compound might be involved in decreasing the neurotransmitter release and synaptic transmission in the central nervous system. The findings presented here provide the first detailed approach on the different effects of crambescin and crambescidin compounds in voltage-gated sodium, potassium, and calcium channels in neurons and thus provide a basis for future studies.


Assuntos
Alcaloides/química , Canais de Cálcio/metabolismo , Guanidinas/química , Compostos Heterocíclicos com 2 Anéis/química , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Pirimidinas/química , Canais de Sódio/metabolismo , Compostos de Espiro/química , Alcaloides/farmacologia , Alcaloides/toxicidade , Animais , Canais de Cálcio/química , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Guanidinas/toxicidade , Compostos Heterocíclicos com 2 Anéis/toxicidade , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Pirimidinas/toxicidade , Canais de Sódio/química , Compostos de Espiro/toxicidade
19.
Chem Res Toxicol ; 26(2): 203-12, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23270326

RESUMO

The increasing presence of cyanotoxin producers in several regions of the world is hazardous for humans and animals. Cylindrospermopsin (CYN) is nowadays recognized as a widely distributed freshwater cyanobacterial toxin. This toxin has been shown to induce protein synthesis inhibition as well as inhibition of glutathione synthesis. Given that the liver seems to be the main target of cylindrospermopsin, in this work we used cultures of primary rat hepatocytes to study the type of cell death induced by CYN nanomolar concentrations. The involvement of reactive oxygen species in toxin induced cell death, the relationship between protein synthesis inhibition and toxicity, and the cell endogenous antioxidant response regulation were studied. We show that cylindrospermopsin induces apoptosis in primary rat hepatocytes. At the concentrations used in this work, protein synthesis inhibition and oxidative stress were involved in the cytotoxic effect elicited by the toxin. Finally, activation of the cell antioxidant response was observed at the transcriptional and translational levels.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Hepatócitos/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Uracila/análogos & derivados , Alcaloides , Animais , Antioxidantes/metabolismo , Células Cultivadas , Cianobactérias/química , Toxinas de Cianobactérias , Hepatócitos/citologia , Hepatócitos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Uracila/toxicidade
20.
Mar Drugs ; 11(11): 4419-34, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24217285

RESUMO

In this paper, we show the effect of crambescidin-816, -800, and -830 on Saccharomyces cerevisiae viability. We determined that, of the three molecules tested, crambescidin-816 was the most potent. Based on this result, we continued by determining the effect of crambescidin-816 on the cell cycle of this yeast. The compound induced cell cycle arrest in G2/M followed by an increase in cell DNA content and size. When the type of cell death was analyzed, we observed that crambescidin-816 induced apoptosis. The antifungal effect indicates that crambescidins, and mostly crambescidin-816, could serve as a lead compound to fight fungal infections.


Assuntos
Alcaloides/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Compostos de Espiro/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Guanidina/análogos & derivados , Guanidina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA