Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Pharm ; 14(2): 377-385, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28068097

RESUMO

A generalized screening approach, applying isothermal calorimetry at 37 °C 100% RH, to formulations of spray dried dispersions (SDDs) for two active pharmaceutical ingredients (APIs) (BMS-903452 and BMS-986034) is demonstrated. APIs 452 and 034, with similar chemotypes, were synthesized and promoted during development for oral dosing. Both APIs were formulated as SDDs for animal exposure studies using the polymer hydroxypropylmethlycellulose acetyl succinate M grade (HPMCAS-M). 452 formulated at 30% (wt/wt %) was an extremely robust SDD that was able to withstand 40 °C 75% RH open storage conditions for 6 months with no physical evidence of crystallization or loss of dissolution performance. Though 034 was a chemical analogue with similar physical chemical properties to 452, a physically stable SDD of 034 could not be formulated in HPMCAS-M at any of the drug loads attempted. This study was used to develop experience with specific physical characterization laboratory techniques to evaluate the physical stability of SDDs and to characterize the propensity of SDDs to phase separate and possibly crystallize. The screening strategy adopted was to stress the formulated SDDs with a temperature humidity screen, within the calorimeter, and to apply orthogonal analytical techniques to gain a more informed understanding of why these SDDs formulated with HPMCAS-M demonstrated such different physical stability. Isothermal calorimetry (thermal activity monitor, TAM) was employed as a primary stress screen wherein the SDD formulations were monitored for 3 days at 37 °C 100% RH for signs of phase separation and possible crystallization of API. Powder X-ray diffraction (pXRD), modulated differential scanning calorimetry (mDSC), Fourier transform infrared spectroscopy (FTIR), and solid state nuclear magnetic resonance (ssNMR) were all used to examine formulated SDDs and neat amorphous drug. 452 SDDs formulated at 30% (wt/wt %) or less did not show phase separation behavior upon exposure to 37 °C 100% RH for 3 days. 034 SDD formulations from 10 through 50% (wt/wt %) all demonstrated thermal traces consistent with exothermic phase separation events over 3 days at 37 °C 100% RH in the TAM. However, only the 15, 30, and 50% containing 034 samples showed pXRD patterns consistent with crystalline material in post-TAM samples. Isothermal calorimetry is a useful screening tool to probe robust SDD physical performance and help investigate the level of drug polymer miscibility under a humid stress. Orthogonal analytical techniques such as pXRD, ssNMR, and FTIR were key in this SDD formulation screening to gain physical understanding and confirm or refute whether physical changes occur during the observed thermal events characterized by the calorimetric screening experiments.


Assuntos
Metilcelulose/análogos & derivados , Polímeros/química , Pós/química , Piridonas/química , Sulfonas/química , Animais , Calorimetria/métodos , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização , Estabilidade de Medicamentos , Umidade , Metilcelulose/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Difração de Raios X/métodos
2.
Pharm Res ; 32(8): 2579-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25724158

RESUMO

PURPOSE: Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. METHODS: Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. RESULTS: Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. CONCLUSIONS: Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.


Assuntos
Alanina/análogos & derivados , Triazinas/química , Triazinas/farmacocinética , Administração Oral , Alanina/química , Alanina/farmacocinética , Soluções Tampão , Calorimetria , Química Farmacêutica , Coloides , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Tamanho da Partícula , Solubilidade , Tensão Superficial
3.
Mol Pharm ; 10(11): 4063-73, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24032349

RESUMO

Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.


Assuntos
Medição de Risco , Absorção , Acloridria/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos
4.
Eur J Pharm Sci ; 152: 105429, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561460

RESUMO

Poly (vinyl alcohol), PVA, a commonly used excipient to coat tablets, forms insoluble films in the presence of acids and thermal stress. This may lead to drug products failing to meet dissolution specifications over time. Studies were conducted to understand the effect of acid strength, processing conditions, and storage stress on the mechanism of insoluble film formation using PVA and OpadryⓇ II as model systems. Aqueous cast films, prepared by incorporating hydrochloric acid (HCl) into the coating solutions or exposing pre-cast "as is" films to HCl vapors, were used as surrogates to develop analytical methods. To understand effect of acid and processing on coatings, acidified OpadryⓇ II was spray coated onto inert cores under "wet" or "dry" conditions. Samples stored at 50-60 °C were analyzed for film disintegration to understand physical/chemical changes in the polymer. Rate and extent of insoluble films formation was dependent on the acid concentration and thermal stress. Analysis of the films indicated significant de-acetylation and ether bond formation in insoluble aqueous cast films. In contrast, acidified coated films showed only ether bond formation, which increased on stress, forming insoluble films. The reduction in the time to form insoluble films for "wet" versus "dry" coated films was rationalized by considering effect of coating, drying, and storage on the microstructure of acidified PVA and ether bond propagation. The results highlight the need to develop an in-depth understanding of the design space for PVA coated products and storage conditions in presence of acids.


Assuntos
Excipientes , Álcool de Polivinil , Polímeros , Comprimidos
5.
Molecules ; 13(7): 1441-54, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-18719516

RESUMO

A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5'-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 - 2.3 mM in Caco-2 and 2.0 - 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 - 5.31 x 10(-6 )cm/sec) and floxuridine (0.48 x 10(-6 )cm/sec) were much higher than that of 5-FU (0.038 x 10(-6) cm/sec). MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1) exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.


Assuntos
Aminoácidos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Floxuridina/farmacologia , Floxuridina/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Simportadores/metabolismo , Absorção/efeitos dos fármacos , Aminoácidos/síntese química , Aminoácidos/farmacocinética , Animais , Antimetabólitos Antineoplásicos/síntese química , Células CACO-2 , Cães , Sistemas de Liberação de Medicamentos , Ésteres , Inibidores do Crescimento/farmacocinética , Inibidores do Crescimento/farmacologia , Humanos , Transportador 1 de Peptídeos , Pró-Fármacos/síntese química , Simportadores/biossíntese , Simportadores/genética
6.
J Pharm Sci ; 107(2): 682-689, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031976

RESUMO

Protein adsorbed at the silicone oil-water interface can undergo a conformational change that has the potential to induce protein aggregation on storage. Characterization of the protein structures at interface is therefore critical for understanding the protein-interface interactions. In this article, we have applied sum frequency generation (SFG) spectroscopy for studying the secondary structures of a fusion protein at interface and the surfactant effect on protein adsorption to silicone oil-water interface. SFG and chiral SFG spectra from adsorbed protein in the amide I region were analyzed. The presence of beta-sheet vibrational band at 1635 cm-1 implies the protein secondary structure was likely perturbed when protein adsorbed at silicone oil interface. The time-dependent SFG study showed a significant reduction in the SFG signal of preadsorbed protein when polysorbate 20 was introduced, suggesting surfactant has stronger interaction with the interface leading to desorption of protein from the interface. In the preadsorbed surfactant and a mixture of protein/polysorbate 20, SFG analysis confirmed that surfactant can dramatically prevent the protein adsorption to silicone oil surface. This study has demonstrated the potential of SFG for providing the detailed molecular level understanding of protein conformation at interface and assessing the influence of surfactant on protein adsorption behavior.


Assuntos
Proteínas/química , Óleos de Silicone/química , Água/química , Adsorção/efeitos dos fármacos , Polissorbatos/química , Estrutura Secundária de Proteína , Análise Espectral/métodos , Propriedades de Superfície , Tensoativos/química , Vibração
7.
Arch Pharm Res ; 30(4): 507-18, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17489369

RESUMO

The purpose of this study was to investigate the utility of stably transfected MDCK-hPepT1 cells for identifying peptide transporter substrates in early drug discovery and compare the characteristics of this cell line with Caco-2 cells. MDCK-hPepT1, MDCK-mock, and Caco-2 cells grown to confluence on 24-well Transwell were used for this study. Expression levels of different transporter proteins (PepT1, PepT2, P-gp) in these cell lines were assessed by qRT-PCR. Permeability studies were conducted in parallel in all the cells with a diverse set of peptide substrates using the optimized experimental condition: 100 microM, apical pH 6.0, basolateral pH 7.4, 2 hr incubation at 37 degrees C. Permeability studies were also conducted with classical P-gp substrates (tested in bi-directional mode) and paracellularly absorbed probes to investigate the differences between the cell lines. As expected, MDCK-hPepT1 cells express significantly higher level of PepT1 mRNA compared to both Caco-2 and MDCK-mock cells. Efflux transporter, P-gp, was expressed adequately in all the cell lines. Permeability studies demonstrated that classical peptide substrates had significantly higher permeability in stably transfected MDCK-hPepT1 cells compared to MDCK-mock and Caco-2 cells. The transfected MDCK-hPepT1 cells were qualitatively similar to Caco-2 cells with respect to functional P-gp efflux activity and paracellular pore activity. Stably transfected MDCK-hPepT1 cells have been demonstrated as a viable alternative to Caco-2 cells for estimating the human absorption potential of peptide transporter substrates. These cells behave similar to Caco-2 cells with regards to P-gp efflux and paracellular pore activity but demonstrate greater predictability of absorption values for classical peptide substrates (for which Caco-2 cells under-estimate oral absorption).


Assuntos
Absorção Intestinal , Simportadores/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Cães , Humanos , Transportador 1 de Peptídeos , Permeabilidade , Transfecção
8.
J Med Chem ; 49(12): 3636-44, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759105

RESUMO

The human intestinal oligopeptide transporter (PEPT1) facilitates the absorption of dipeptides, tripeptides, and many peptidomimetic drugs. In this study, a large number of peptides were selected to investigate the structural features required for PEPT1 transport. Binding affinity was determined in a Gly-Sar uptake inhibition assay, whereas functional transport was ranked in a membrane depolarization assay. Although most of the peptides tested could bind to PEPT1, not all were substrates. As expected, single amino acids and tetrapeptides could not bind to or be transported by PEPT1. Dipeptide transport was influenced by charge, hydrophobicity, size, and side chain flexibility. The extent of transport was variable, and unexpectedly, some dipeptides were not substrates of PEPT1. These included dipeptides with two positive charges or extreme bulk in either position 1 or 2. Our results identify key features required for PEPT1 transport in contrast to most previously described pharmacophores, which are based on the inhibition of transport of a known substrate.


Assuntos
Dipeptídeos/farmacocinética , Simportadores/fisiologia , Animais , Sítios de Ligação , Transporte Biológico , Linhagem Celular , Dipeptídeos/química , Dipeptídeos/metabolismo , Cães , Eletricidade , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Transportador 1 de Peptídeos , Prolina/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Simportadores/metabolismo
9.
Mol Cancer Ther ; 4(4): 659-67, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15827340

RESUMO

Floxuridine is a clinically proven anticancer agent in the treatment of metastatic colon carcinomas and hepatic metastases. However, prodrug strategies may be necessary to improve its physiochemical properties and selectivity and to reduce undesirable toxicity effects. Previous studies with amino acid ester prodrugs of nucleoside drugs targeted to the PEPT1 transporter coupled with recent findings of the functional expression of the PEPT1 oligopeptide transporter in pancreatic adenocarcinoma cell lines suggest the potential of PEPT1 as therapeutic targets for cancer treatment. In this report, we show the feasibility of achieving enhanced transport and selective antiproliferative action of amino acid ester prodrugs of floxuridine in cell systems overexpressing PEPT1. All prodrugs exhibited affinity for PEPT1 (IC50, 1.1-2.3 mmol/L). However, only the prolyl and lysyl prodrugs exhibited enhanced uptake (2- to 8-fold) with HeLa/PEPT1 cells compared with HeLa cells, suggesting that the aspartyl prodrugs are PEPT1 inhibitors. The selective growth inhibition of Madine-Darby canine kidney (MDCK)/PEPT1 cells over MDCK cells by the prodrugs was consistent with the extent of their PEPT1-mediated transport. All ester prodrugs hydrolyzed to floxuridine fastest in Caco-2 cell and MDCK homogenates and slower in human plasma and were most chemically stable in pH 6.0 buffer. Prolyl and lysyl prodrugs were relatively less stable compared with aspartyl prodrugs in buffers and in cell homogenates. The results suggest that optimal design for targeted delivery would be possible by combining both stability and transport characteristics afforded by the promoiety.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Floxuridina/farmacologia , Pró-Fármacos/química , Simportadores/biossíntese , Aminoácidos/química , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Cães , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Concentração Inibidora 50 , Lisina/química , Modelos Químicos , Metástase Neoplásica , Nucleosídeos/química , Oligopeptídeos/química , Neoplasias Pancreáticas/tratamento farmacológico , Transportador 1 de Peptídeos , Pró-Fármacos/farmacologia , Prolina/química , Simportadores/metabolismo , Fatores de Tempo
10.
J Med Chem ; 48(4): 1274-7, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-15715497

RESUMO

Amino acid ester prodrugs of 2-bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)benzimidazole (BDCRB) were synthesized and evaluated for their affinity for hPEPT1, an intestinal oligopeptide transporter. Assays of competitive inhibition of [(3)H]glycylsarcosine (Gly-Sar) uptake in HeLa/hPEPT1 cells by the amino acid ester prodrugs of BDCRB suggested their 2- to 4-fold higher affinity for hPEPT1 compared to BDCRB. Further, promoieties with hydrophobic side chains and l-configuration were preferred by the hPEPT1 transporter.


Assuntos
Aminoácidos/síntese química , Antivirais/síntese química , Benzimidazóis/síntese química , Pró-Fármacos/síntese química , Ribonucleosídeos/síntese química , Simportadores/metabolismo , Aminoácidos/química , Aminoácidos/farmacologia , Antivirais/química , Antivirais/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Dipeptídeos/antagonistas & inibidores , Dipeptídeos/metabolismo , Ésteres , Células HeLa , Humanos , Transportador 1 de Peptídeos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ribonucleosídeos/química , Ribonucleosídeos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
11.
AAPS J ; 17(4): 988-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25933598

RESUMO

In vitro and in vivo experimental models are frequently used to assess a new chemical entity's (NCE) biopharmaceutical performance risk for food effect (FE) in humans. Their ability to predict human FE hinges on replicating key features of clinical FE studies and building an in vitro-in vivo relationship (IVIVR). In this study, 22 compounds that span a wide range of physicochemical properties, Biopharmaceutics Classification System (BCS) classes, and food sensitivity were evaluated for biorelevant dissolution in fasted- and fed-state intestinal media and the dog fed/fasted-state pharmacokinetic model. Using the area under the curve (AUC) as a performance measure, the ratio of the fed-to-fasted AUC (FE ratio) was used to correlate each experimental model to FE ratio in humans. A linear correlation was observed for the in vitro dissolution-human IVIVR (R (2) = 0.66, % mean square error 20.7%). Similarly, the dog FE ratio correlated linearly with the FE ratio in humans (R (2) = 0.74, % mean square error 16.25%) for 15 compounds. Data points near the correlation line indicate dissolution-driven mechanism for food effect, while deviations from the correlation line shed light on unique mechanisms that can come into play such as GI physiology or unusual physicochemical properties. In summary, fed/fasted dissolution studies and dog PK studies show a reasonable correlation to human FE, hence are useful tools to flag high-risk NCEs entering clinical development. Combining kinetic dissolution, dog FE model and in silico modeling one can study FE mechanism and formulation strategies to mitigate the FE risk.


Assuntos
Simulação por Computador , Interações Alimento-Droga , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Área Sob a Curva , Cães , Jejum , Humanos , Masculino , Preparações Farmacêuticas/química , Farmacocinética , Solubilidade , Especificidade da Espécie
12.
J Med Chem ; 47(2): 446-55, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14711314

RESUMO

cyclo[d-Asp(2),Dap(5)]Dyn A-(1-13)NH(2) (Dap, 2,3-diaminopropionic acid; Dyn A, dynorphin A), synthesized previously in our laboratory, showed sub-nanomolar affinity for kappa opioid receptors and potent agonist activity in the guinea pig ileum assay (Arttamangkul et al., J. Med. Chem. 1995, 38, 2410-2417). Various modifications were made in position 3 of cyclo[d-Asp(2),Dap(5)]Dyn A-(1-11)NH(2) that could influence the opioid receptor affinity, selectivity, and/or efficacy of this peptide. An optimized orthogonal synthetic strategy was developed for the synthesis of these cyclic peptides in which the final peptides could be cleaved from the solid support with trifluoroacetic acid. Substitutions of Gly(3) by Ala, d-Ala, Trp, and d-Trp in cyclo[d-Asp(2),Dap(5)]Dyn A-(1-11)NH(2) and its linear counterpart [d-Asp(2),Dap(5)]Dyn A-(1-11)NH(2) were generally well tolerated by both kappa and micro opioid receptors. Despite differences in the size and stereochemistry of the substitutions, most of the peptides (except for cyclo[d-Asp(2),Pro(3),Dap(5)]Dyn A-(1-11)NH(2) and [d-Asp(2),d-Ala(3), Dap(5)]Dyn A-(1-11)NH(2)) exhibited low nanomolar affinity for both kappa (K(i) = 0.21 to 2.2 nM) and micro (K(i) = 0.22 to 7.27 nM) opioid receptors. All of the 3-substituted cyclic and linear analogues synthesized showed reduced affinity for delta opioid receptors. Incorporation of d-Ala at position 3 of cyclo[d-Asp(2),Dap(5)]Dyn A-(1-11)NH(2) exhibited 2-fold higher kappa opioid receptor affinity and 16-fold higher selectivity for kappa over micro opioid receptors than the parent cyclic peptide. In contrast, substitution of Ala at position 3 resulted in an analogue with 2.4-fold lower affinity and very low preference for kappa over micro opioid receptors. The Trp and d-Trp cyclic and linear analogues exhibited similar nanomolar affinities for kappa opioid receptors. cyclo[d-Asp(2),Pro(3),Dap(5)]Dyn A-(1-11)NH(2) showed the largest decreases in affinity for all three opioid receptors compared to the parent cyclic peptide. Except for cyclo[d-Asp(2), Pro(3),Dap(5)]Dyn A-(1-11)NH(2), which was a partial agonist, all of the cyclic peptides exhibited full agonist activity in the adenylyl cyclase assay using cloned kappa opioid receptors.


Assuntos
Dinorfinas/síntese química , Peptídeos Cíclicos/síntese química , Receptores Opioides/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Dinorfinas/química , Dinorfinas/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ensaio Radioligante , Receptores Opioides/metabolismo , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
13.
J Med Chem ; 46(8): 1279-82, 2003 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-12672226

RESUMO

A novel N-terminal-to-side chain cyclic dynorphin A analogue lacking the basic N-terminus was designed based on Ac[Lys(2),Trp(3),Trp(4),d-Ala(8)]dynorphin A-(1-11)NH(2) (Wan et al. J. Med. Chem. 1999, 42, 3011-3013). cyclo(N,5)[Trp(3),Trp(4),Glu(5)]dynorphin A-(1-11)NH(2) showed similar kappa opioid receptor affinity (K(i) = 27 nM) and selectivity (K(i) ratio (kappa/mu/delta) = 1/12/330) to the linear peptide and antagonized dynorphin A-(1-13)NH(2) at kappa opioid receptors. This is the first opioid peptide cyclized through the N-terminus that retains high opioid receptor affinity.


Assuntos
Dinorfinas/síntese química , Peptídeos Cíclicos/síntese química , Receptores Opioides kappa/antagonistas & inibidores , Animais , Células CHO , Cricetinae , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/biossíntese , Dinorfinas/química , Dinorfinas/farmacologia , Ligantes , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
14.
J Med Chem ; 46(19): 4002-8, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12954053

RESUMO

Phenylalanine at position 4 of the peptide dynorphin A (Dyn A) is an important residue for opioid receptor affinity and activity, but there is very little information available on the structure-activity relationships or conformational preference of this residue for interaction with kappa-opioid receptors. Based on the hypothesis that the spatial orientation of the aromatic ring at position 4 of Dyn A is important for opioid receptor affinity and selectivity, a series of Dyn A analogues with various Phe derivatives substituted at position 4 were synthesized and evaluated for their opioid receptor affinity and activity. The L- and D-Homophe4 (homophenylalanine) analogues of [D-Ala8]Dyn A-(1-11)NH2 were compared to the (R)- and (S)-Atc4 (2-aminotetralin-2-carboxylic acid) derivatives (Aldrich et al. Chirality 2001, 13, 125-129). [l-Homophe4,D-Ala8]Dyn A-(1-11)NH2 exhibited higher kappa-opioid receptor affinity than the D-Homophe4 isomer, while [(R)-Atc4,D-Ala8]Dyn A-(1-11)NH2 exhibited higher kappa-opioid receptor affinity than the (S)-Atc4 isomer. Comparing the structure of Atc to those of Phe and Homophe, these results suggest that the Atc isomers are functioning more as constrained Homophe rather than Phe analogues in these Dyn A derivatives. The higher kappa-opioid receptor affinity of the (R)-Atc4 analogue suggests that Phe4 of Dyn A most likely adopts a gauche (-) or trans conformation in the kappa-opioid receptor binding site. Comparison of [D-Ala8]Dyn A-(1-11)NH2 derivatives containing Aic4 (2-aminoindan-2-carboxylic acid) and Tic4 (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) with the peptides containing their acyclic counterparts alpha-MePhe4 and N-MePhe4, respectively, suggest that the loss in opioid receptor affinity seen for the Aic4 and Tic4 analogues is probably due to an improper orientation of the aromatic ring in these residues. Most of the analogues in this series showed much lower affinity for delta-opioid receptors than the parent peptide, suggesting that kappa- and delta-opioid receptors have distinct binding pockets for the residue at position 4 of Dyn A. All of the analogues with high affinity for kappa-opioid receptors exhibited full agonist activity in the adenylyl cyclase assay using cloned kappa-opioid receptors, indicating that changes in the position or orientation of the phenyl ring in this residue did not alter the ability of the peptides to activate the receptor.


Assuntos
Alanina/química , Dinorfinas/química , Dinorfinas/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Clonagem Molecular , Colforsina/antagonistas & inibidores , Colforsina/farmacologia , Cricetinae , Dinorfinas/síntese química , Dinorfinas/farmacologia , Isomerismo , Modelos Moleculares , Fenilalanina/farmacologia , Conformação Proteica , Ensaio Radioligante , Ratos , Receptores Opioides/genética , Receptores Opioides/metabolismo , Especificidade por Substrato
15.
Int J Pharm ; 465(1-2): 210-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24508807

RESUMO

The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.


Assuntos
Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Química Farmacêutica , Microscopia Crioeletrônica , Dessecação , Luz , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Pós , Espalhamento de Radiação , Propriedades de Superfície
16.
Adv Drug Deliv Rev ; 65(10): 1370-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23099277

RESUMO

Prodrugs are biologically inactive agents that upon biotransformation in vivo result in active drug molecules. Since prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug, prodrug design should be considered at the early stages of preclinical development. In this regard, natural and synthetic amino acids offer wide structural diversity and physicochemical properties. This review covers the use of amino acid prodrugs to improve poor solubility, poor permeability, sustained release, intravenous delivery, drug targeting, and metabolic stability of the parent drug. In addition, practical considerations and challenges associated with the development of amino acid prodrugs are also covered.


Assuntos
Aminoácidos/química , Pró-Fármacos/química , Aminoácidos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Pró-Fármacos/administração & dosagem
17.
Pharmaceutics ; 4(2): 314-33, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24300234

RESUMO

The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

19.
Pharm Res ; 24(7): 1290-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17377743

RESUMO

PURPOSE: To determine the bioactivation and uptake of prolidase-targeted proline prodrugs of melphalan in six cancer cell lines with variable prolidase expression and to evaluate prolidase-dependence of prodrug cytotoxicity in the cell lines compared to that of the parent drug, melphalan. MATERIALS AND METHODS: Hydrolysis, cell uptake, and cell proliferation studies of melphalan and the L: - and D: -proline prodrugs of melphalan, prophalan-L: and prophalan-D: , respectively, were conducted in the cancer cell lines using established procedures. RESULTS: The bioactivation of prophalan-L: in the cancer cell lines exhibited high correlation with their prolidase expression levels (r (2) = 0.86). There were no significant differences in uptake of melphalan and its prodrugs. The cytotoxicity of prophalan-L: (GI(50)) in cancer cells also showed high correlation with prolidase expression (r (2) = 0.88), while prophalan-D: was ineffective at comparable concentrations. A prolidase targeting index (ratio of melphalan to prophalan-L: cytotoxicity normalized to their uptake) was computed and showed high correlation with prolidase expression (r (2) = 0.82). CONCLUSIONS: The data corroborates the specificity of prophalan-L: activation by prolidase as well as prolidase-targeted cytotoxicity of prophalan-L: in cancer cell lines. Hence, prophalan-L: , a stable prodrug of melphalan, exhibits potential for efficiently targeting melanoma with reduced systemic toxicity.


Assuntos
Antineoplásicos Alquilantes/metabolismo , Dipeptidases/metabolismo , Melanoma/metabolismo , Melfalan/metabolismo , Pró-Fármacos/metabolismo , Prolina/metabolismo , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Transporte Biológico , Biotransformação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/metabolismo , Dipeptidases/antagonistas & inibidores , Dipeptidases/genética , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrólise , Concentração Inibidora 50 , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Melfalan/análogos & derivados , Melfalan/química , Melfalan/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Prolina/análogos & derivados , Prolina/química , Prolina/farmacologia , Inibidores de Proteases/farmacologia , RNA Mensageiro/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA