RESUMO
Background Whether connectome mapping of structural and functional connectivity across the brain could be used to predict patterns of atrophy progression in patients with mild Parkinson disease (PD) has not been well studied. Purpose To assess the structural and functional connectivity of brain regions in healthy controls and its relationship with the spread of gray matter (GM) atrophy in patients with mild PD. Materials and Methods This prospective study included participants with mild PD and controls recruited from a single center between January 2012 and December 2023. Participants with PD underwent three-dimensional T1-weighted brain MRI, and the extent of regional GM atrophy was determined at baseline and every year for 3 years. The structural and functional brain connectome was constructed using diffusion tensor imaging and resting-state functional MRI in healthy controls. Disease exposure (DE) indexes-indexes of the pathology of each brain region-were defined as a function of the structural or functional connectivity of all the connected regions in the healthy connectome and the severity of atrophy of the connected regions in participants with PD. Partial correlations were tested between structural and functional DE indexes of each GM region at 1- or 2-year follow-up and atrophy progression at 2- or 3-year follow-up. Prediction models of atrophy at 2- or 3-year follow-up were constructed using exhaustive feature selection. Results A total of 86 participants with mild PD (mean age at MRI, 60 years ± 8 [SD]; 48 male) and 60 healthy controls (mean age at MRI, 62 years ± 9; 31 female) were included. DE indexes at 1 and 2 years were correlated with atrophy at 2 and 3 years (r range, 0.22-0.33; P value range, .002-.04). Models including DE indexes predicted GM atrophy accumulation over 3 years in the right caudate nucleus and some frontal, parietal, and temporal brain regions (R2 range, 0.40-0.61; all P < .001). Conclusion The structural and functional organization of the brain connectome plays a role in atrophy progression in the early stages of PD. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yamada in this issue.
Assuntos
Atrofia , Encéfalo , Conectoma , Progressão da Doença , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Masculino , Feminino , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso , Conectoma/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imagem de Tensor de Difusão/métodosRESUMO
Parkinson's disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the pars compacta of the midbrain substantia nigra. PD pathophysiology is complex, multifactorial, and not fully understood yet. Nonetheless, recent data show that immune system hyperactivation with concomitant production of pro-inflammatory cytokines, both in the central nervous system (CNS) and the periphery, is a signature of idiopathic PD. About 5% of PD patients present an early onset with a determined genetic cause, with either autosomal dominant or recessive inheritance. The involvement of immunity in the genetic forms of PD has been a matter of interest in several recent studies. In this review, we will summarize the main findings of this new and promising field of research.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Imunidade , Doença de Parkinson/genética , Substância Negra/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Neurodegenerative diseases are progressive brain disorders characterized by inexorable synaptic dysfunction and neuronal loss. Since the most consistent risk factor for developing neurodegenerative diseases is aging, the prevalence of these disorders is intended to increase with increasing life expectancy. Alzheimer's disease is the most common cause of neurodegenerative dementia, representing a significant medical, social, and economic burden worldwide. Despite growing research to reach an early diagnosis and optimal patient management, no disease-modifying therapies are currently available. Chronic neuroinflammation has been recognized as a crucial player in sustaining neurodegenerative processes, along with pathological deposition of misfolded proteins, including amyloid-ß and tau protein. Modulating neuroinflammatory responses may be a promising therapeutic strategy in future clinical trials. Among factors that are able to regulate neuroinflammatory mechanisms, diet, and nutrients represent easily accessible and modifiable lifestyle components. Mediterranean diet and several nutrients, including polyphenols, vitamins, and omega-3 polyunsaturated fatty acids, can exert antioxidant and anti-inflammatory properties, impacting clinical manifestations, cognitive decline, and dementia. This review aims to provide an updated overview of the relationship between neuroinflammation, nutrition, gut microbiota, and neurodegeneration. We summarize the major studies exploring the effects of diet regimes on cognitive decline, primarily focusing on Alzheimer's disease dementia and the impact of these results on the design of ongoing clinical trials.
RESUMO
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are severely debilitating and progressive neurodegenerative disorders. A distinctive pathological feature of several neurodegenerative diseases, including ALS and FTD, is the deposition of aberrant protein inclusions in neuronal cells, which leads to cellular dysfunction and neuronal damage and loss. Despite this, to date, the biological process behind developing these protein inclusions must be better clarified, making the development of disease-modifying treatment impossible until this is done. Proteomics is a powerful tool to characterize the expression, structure, functions, interactions, and modifications of proteins of tissue and biological fluid, including plasma, serum, and cerebrospinal fluid. This protein-profiling characterization aims to identify disease-specific protein alteration or specific pathology-based mechanisms which may be used as markers of these conditions. Our narrative review aims to highlight the need for biomarkers and the potential use of proteomics in clinical practice for ALS-FTD spectrum disorders, considering the emerging rationale in proteomics for new drug development. Certainly, new data will emerge in the near future in this regard and support clinicians in the development of personalized medicine.
RESUMO
Objectives: We report the clinical presentation and evolution of a case with a novel Progranulin gene (GRN) mutation and non-fluent language disturbances at onset. Materials and methods: A 60 year-old, white patient was followed due to a history of language disturbances. Eighteen months after onset, the patient underwent FDG positron emission tomography (PET), and at month 24 was hospitalized to perform neuropsychological evaluation, brain 3 T MRI, lumbar puncture for cerebrospinal fluid (CSF) analysis, and genotyping. At month 31, the patient repeated the neuropsychological evaluation and brain MRI. Results: At onset the patient complained prominent language production difficulties, such as effortful speech and anomia. At month 18, FDG-PET showed left fronto-temporal and striatal hypometabolism. At month 24, the neuropsychological evaluation reported prevalent speech and comprehension deficits. Brain MRI reported left fronto-opercular and striatal atrophy, and left frontal periventricular white matter hyperintensities (WMHs). Increased CSF total tau level was observed. Genotyping revealed a new GRN c.1018delC (p.H340TfsX21) mutation. The patient received a diagnosis of non-fluent variant of primary progressive aphasia (nfvPPA). At month 31, language deficits worsened, together with attention and executive functions. The patient presented also with behavioral disturbances, and a progressive atrophy in the left frontal-opercular and temporo-mesial region. Discussion and conclusion: The new GRN p.H340TfsX21 mutation resulted in a case of nfvPPA characterized by fronto-temporal and striatal alterations, typical frontal asymmetric WMHs, and a fast progression toward a widespread cognitive and behavioral impairment, which reflects a frontotemporal lobar degeneration. Our findings extend the current knowledge of the phenotypic heterogeneity among GRN mutation carriers.
RESUMO
COVID-19 was first identified in China in late 2019 and spread globally, originating a pandemic. To limit the spreading of the virus, many countries, including Italy, introduced social distancing measures and limited human movement. The Italian government declared a lockdown of the whole country lasting about two months, and the introduced restrictive rules heavily impacted patients with chronic neurological diseases because of the reduced access to healthcare and community support services. In Parkinson's disease, studies confirmed lockdown restrictions increase levels of psychological distress, impose limitations on physical activities, and cause a lack of clinical assistance. This study aims at investigating the impact of the pandemic during and beyond the lockdown period in such patients using an online survey. A total of 387 total patients accessed the survey and were asked about their personal experiences during and after lockdown. The results show a significant impact on people's lives even months after lockdown restrictions were lifted, with a substantial and durable worsening in different aspects of daily life, heavily influenced by impaired access to health services-particularly physical therapies, including personal physical activity-and readily available clinical counselling, with an overall observation of worsening symptoms control. These aspects should be carefully considered in the assessment of global health care strategies to overcome the current pandemic and its broader effects.