Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 17(2): e1009243, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524041

RESUMO

The current pandemic emergence of novel coronavirus disease (COVID-19) poses a relevant threat to global health. SARS-CoV-2 infection is characterized by a wide range of clinical manifestations, ranging from absence of symptoms to severe forms that need intensive care treatment. Here, plasma-EDTA samples of 30 patients compared with age- and sex-matched controls were analyzed via untargeted nuclear magnetic resonance (NMR)-based metabolomics and lipidomics. With the same approach, the effect of tocilizumab administration was evaluated in a subset of patients. Despite the heterogeneity of the clinical symptoms, COVID-19 patients are characterized by common plasma metabolomic and lipidomic signatures (91.7% and 87.5% accuracy, respectively, when compared to controls). Tocilizumab treatment resulted in at least partial reversion of the metabolic alterations due to SARS-CoV-2 infection. In conclusion, NMR-based metabolomic and lipidomic profiling provides novel insights into the pathophysiological mechanism of human response to SARS-CoV-2 infection and to monitor treatment outcomes.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , Lipidômica , Lipídeos/sangue , SARS-CoV-2/metabolismo , COVID-19/sangue , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Ressonância Magnética Nuclear Biomolecular
2.
Handb Exp Pharmacol ; 277: 209-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318327

RESUMO

The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética
3.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203468

RESUMO

Reduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29). In parallel, we evaluated their serum lipid levels. Twenty-one lipids were identified by their mass/charge ratio and post-source decay spectra. Sulfogalactosylglycerolipid (SGG, seminolipid) was the most abundant lipid component in the membranes. In addition, we observed a significant proportion of PUFAs. Important differences have emerged between the fertile and infertile groups, leading to the identification of a lipid cluster that was associated with semen parameters. Among these, cholesterol sulfate, SGG, and PUFAs represented the most important predictors of semen quality. No association was found between the serum and sperm lipids. Dietary PUFAs and SGG have acknowledged antioxidant functions and could, therefore, represent sensitive markers of sperm quality and testicular function. Altogether, these results underline the important role of sperm membrane lipids, which act independently of serum lipids levels and may rather represent an independent marker of reproductive function.


Assuntos
Astenozoospermia , Análise do Sêmen , Humanos , Masculino , Sêmen , Lipidômica , Motilidade dos Espermatozoides , Espermatozoides , Lipídeos de Membrana , Análise por Conglomerados
4.
J Proteome Res ; 21(4): 1061-1072, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271285

RESUMO

Blood derivatives are the biofluids of choice for metabolomic clinical studies since blood can be collected with low invasiveness and is rich in biological information. However, the choice of the blood collection tubes has an undeniable impact on the plasma and serum metabolic content. Here, we compared the metabolomic and lipoprotein profiles of blood samples collected at the same time and place from six healthy volunteers but using different collection tubes (each enrolled volunteer provided multiple blood samples at a distance of a few weeks/months): citrate plasma, EDTA plasma, and serum tubes. All samples were analyzed via nuclear magnetic resonance spectroscopy. Several metabolites showed statistically significant alterations among the three blood matrices, and also metabolites' correlations were shown to be affected. The effects of blood collection tubes on the lipoproteins' profiles are relevant too, but less marked. Overcoming the issue associated with different blood collection tubes is pivotal to scale metabolomics and lipoprotein analysis at the level of epidemiological studies based on samples from multicenter cohorts. We propose a statistical solution, based on regression, that is shown to be efficient in reducing the alterations induced by the different collection tubes for both the metabolomic and lipoprotein profiles.


Assuntos
Plasma , Soro , Coleta de Amostras Sanguíneas/métodos , Ácido Cítrico/metabolismo , Humanos , Metabolômica/métodos , Plasma/química , Soro/química
5.
J Proteome Res ; 20(1): 1040-1051, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33274633

RESUMO

There is mounting evidence that subclinical nonpathological high blood pressure and heart rate during youth and adulthood steadily increase the risk of developing a cardiovascular disease at a later stage. For this reason, it is important to understand the mechanisms underlying the subclinical elevation of blood pressure and heart rate in healthy, relatively young individuals. In the present study, we present a network-based metabolomic study of blood plasma metabolites and lipids measured using nuclear magnetic resonance spectroscopy on 841 adult healthy blood donor volunteers, which were stratified for subclinical low and high blood pressure (systolic and diastolic) and heart rate. Our results indicate a rewiring of metabolic pathways active in high and low groups, indicating that the subjects with subclinical high blood pressure and heart rate could present latent cardiometabolic dysregulations.


Assuntos
Doenças Cardiovasculares , Hipertensão , Adolescente , Adulto , Pressão Sanguínea , Voluntários Saudáveis , Frequência Cardíaca , Humanos
6.
BMC Med Inform Decis Mak ; 21(1): 274, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600518

RESUMO

BACKGROUND: Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. METHODS: The European "ITFoC (Information Technology for the Future Of Cancer)" consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. RESULTS: This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the "ITFoC Challenge". This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. CONCLUSIONS: The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.


Assuntos
Inteligência Artificial , Neoplasias , Algoritmos , Humanos , Aprendizado de Máquina , Medicina de Precisão
7.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925233

RESUMO

Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal therapy for the right patient by considering each patient's unique disease and individual health status. In the last years, it has become evident that breast cancer is an extremely heterogeneous disease, and therefore, patients need to be appropriately stratified to maximize survival and quality of life. Gene-expression tools have already positively assisted clinical decision making by estimating the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these approaches need refinement to further reduce the proportion of patients potentially exposed to unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for cancer research and has provided significant results in BC, in particular for prognostic and stratification purposes. In this review, we give an update on the status of NMR-based metabolomic studies for the biochemical characterization and stratification of breast cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine).


Assuntos
Neoplasias da Mama/metabolismo , Metabolômica/métodos , Medicina de Precisão/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Oncologia , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico
8.
J Proteome Res ; 19(4): 1696-1705, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32118444

RESUMO

In this study, we sought for a cerebrospinal fluid (CSF) metabolomic fingerprint in Alzheimer's disease (AD) patients characterized, according to the clinical picture and CSF AD core biomarkers (Aß42, p-tau, and t-tau), both at pre-dementia (mild cognitive impairment due to AD, MCI-AD) and dementia stages (ADdem) and in a group of patients with a normal CSF biomarker profile (non-AD) using untargeted 1H nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. This is a retrospective study based on two independent cohorts: a Dutch cohort, which comprises 20 ADdem, 20 MCI-AD, and 20 non-AD patients, and an Italian cohort, constituted by 14 ADdem and 12 non-AD patients. 1H NMR CSF spectra were analyzed using OPLS-DA. Metabolomic fingerprinting in the Dutch cohort provides a significant discrimination (86.1% accuracy) between ADdem and non-AD. MCI-AD patients show a good discrimination with respect to ADdem (70.0% accuracy) but only slight differences when compared with non-AD (59.6% accuracy). Acetate, valine, and 3-hydroxyisovalerate result to be altered in ADdem patients. Valine correlates with cognitive decline at follow-up (R = 0.53, P = 0.0011). The discrimination between ADdem and non-AD was confirmed in the Italian cohort. The CSF metabolomic fingerprinting shows a signature characteristic of ADdem patients with respect to MCI-AD and non-AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos , Estudos Retrospectivos , Proteínas tau
9.
J Proteome Res ; 19(1): 64-74, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31621329

RESUMO

The aim of this proof-of-concept, pilot study was the evaluation of the effects of steroid administration and suspension of an inhaled corticosteroid (ICS)-long-acting ß2-agonist (LABA) extrafine fixed dose combination (FDC) on metabolomic fingerprints in subjects with chronic obstructive pulmonary disease (COPD). We hypothesized that a comprehensive metabolomics approach discriminates across inhaled pharmacotherapies and that their effects on metabolomic signatures depend on the biological fluids analyzed. We performed metabolomics via nuclear magnetic resonance (NMR) spectroscopy in exhaled breath condensate (EBC), sputum supernatants, serum, and urine. Fourteen patients suffering from COPD who were on regular inhaled fluticasone propionate/salmeterol therapy (visit 1) were consecutively treated with 2-week beclomethasone dipropionate/formoterol (visit 2), 4-week formoterol alone (visit 3), and 4-week beclomethasone/formoterol (visit 4). The comprehensive NMR-based metabolomics approach showed differences across all pharmacotherapies and that different biofluids provided orthogonal information. Serum formate was lower at visits 1 versus 3 (P = 0.03), EBC formate was higher at visit 1 versus 4 (P = 0.03), and urinary 1-methyl-nicotinamide was lower at 3 versus 4 visit (P = 0.002). NMR-based metabolomics of different biofluids distinguishes across inhaled pharmacotherapies, provides complementary information on the effects of an extrafine ICS/LABA FDC on metabolic fingerprints in COPD patients, and might be useful for elucidating the ICS mechanism of action.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Corticosteroides/uso terapêutico , Quimioterapia Combinada , Fumarato de Formoterol/uso terapêutico , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
10.
J Proteome Res ; 19(2): 949-961, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31899863

RESUMO

We present here the differential analysis of metabolite-metabolite association networks constructed from an array of 24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123 died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who survived, at 2 years, the AMI event, and we characterized metabolite-metabolite association networks specific to high and low risks of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the characterization of metabolite-metabolite association networks is a promising and powerful tool to investigate AMI patients according to their outcomes at a molecular level.


Assuntos
Infarto do Miocárdio , Estudos de Coortes , Humanos , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Metabolômica , Fatores de Risco
11.
J Proteome Res ; 18(3): 1228-1236, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30539636

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by ongoing inflammatory destruction of the interlobular bile ducts, eventually leading to chronic cholestasis and biliary cirrhosis. This study primarily aims to define the metabolomic signature of PBC after comparison with healthy controls (HC). Second, it aims to evaluate the possible metabolic association between PBC and celiac disease (CD), an immune-mediated disorder frequently associated with PBC. Serum and urine samples from 20 PBC, 21 CD, and 19 sex-matched HC subjects were collected. 1H nuclear magnetic resonance (NMR) spectra for all samples were acquired, and multivariate statistics were used to evaluate the differences among the three groups and to provide information about the involved metabolites. The classification accuracies to discriminate PBC and HC groups were 78.9-84.6% for serum and 76.9% for urine. In comparison to HC, PBC patient sera were characterized by altered levels ( p value <0.05) of pyruvate, citrate, glutamate, glutamine, serine, tyrosine, phenylalanine, and lactate. PBC patient urine showed lower levels ( p value <0.05) of trigonelline and hippurate with respect to HC. Furthermore, the NMR metabolomic fingerprint was able to cluster PBC with respect to CD patients, and the classification accuracies in the discriminations between these groups were 81.9-91.7% for serum and 77.7% for urine. Our results show that PBC displays a unique metabolomic fingerprint, which led to speculation about an impaired energy metabolism, probably associated with an altered gut microbiota. PBC and CD showed two distinct metabolic fingerprints. These data could provide clues for the comprehension of the PBC pathogenetic mechanisms and the detection of novel therapeutic targets.


Assuntos
Doença Celíaca/genética , Cirrose Hepática Biliar/genética , Metaboloma/genética , Metabolômica , Adulto , Idoso , Doença Celíaca/sangue , Doença Celíaca/patologia , Doença Celíaca/urina , Feminino , Microbioma Gastrointestinal/genética , Voluntários Saudáveis , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/patologia , Cirrose Hepática Biliar/urina , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade
12.
BMC Med ; 17(1): 3, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616610

RESUMO

BACKGROUND: Risk stratification and management of acute myocardial infarction patients continue to be challenging despite considerable efforts made in the last decades by many clinicians and researchers. The aim of this study was to investigate the metabolomic fingerprint of acute myocardial infarction using nuclear magnetic resonance spectroscopy on patient serum samples and to evaluate the possible role of metabolomics in the prognostic stratification of acute myocardial infarction patients. METHODS: In total, 978 acute myocardial infarction patients were enrolled in this study; of these, 146 died and 832 survived during 2 years of follow-up after the acute myocardial infarction. Serum samples were analyzed via high-resolution 1H-nuclear magnetic resonance spectroscopy and the spectra were used to characterize the metabolic fingerprint of patients. Multivariate statistics were used to create a prognostic model for the prediction of death within 2 years after the cardiovascular event. RESULTS: In the training set, metabolomics showed significant differential clustering of the two outcomes cohorts. A prognostic risk model predicted death with 76.9% sensitivity, 79.5% specificity, and 78.2% accuracy, and an area under the receiver operating characteristics curve of 0.859. These results were reproduced in the validation set, obtaining 72.6% sensitivity, 72.6% specificity, and 72.6% accuracy. Cox models were used to compare the known prognostic factors (for example, Global Registry of Acute Coronary Events score, age, sex, Killip class) with the metabolomic random forest risk score. In the univariate analysis, many prognostic factors were statistically associated with the outcomes; among them, the random forest score calculated from the nuclear magnetic resonance data showed a statistically relevant hazard ratio of 6.45 (p = 2.16×10-16). Moreover, in the multivariate regression only age, dyslipidemia, previous cerebrovascular disease, Killip class, and random forest score remained statistically significant, demonstrating their independence from the other variables. CONCLUSIONS: For the first time, metabolomic profiling technologies were used to discriminate between patients with different outcomes after an acute myocardial infarction. These technologies seem to be a valid and accurate addition to standard stratification based on clinical and biohumoral parameters.


Assuntos
Metabolômica/métodos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Idoso , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/classificação , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC
13.
Angew Chem Int Ed Engl ; 58(4): 968-994, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29999221

RESUMO

Metabolomics deals with the whole ensemble of metabolites (the metabolome). As one of the -omic sciences, it relates to biology, physiology, pathology and medicine; but metabolites are chemical entities, small organic molecules or inorganic ions. Therefore, their proper identification and quantitation in complex biological matrices requires a solid chemical ground. With respect to for example, DNA, metabolites are much more prone to oxidation or enzymatic degradation: we can reconstruct large parts of a mammoth's genome from a small specimen, but we are unable to do the same with its metabolome, which was probably largely degraded a few hours after the animal's death. Thus, we need standard operating procedures, good chemical skills in sample preparation for storage and subsequent analysis, accurate analytical procedures, a broad knowledge of chemometrics and advanced statistical tools, and a good knowledge of at least one of the two metabolomic techniques, MS or NMR. All these skills are traditionally cultivated by chemists. Here we focus on metabolomics from the chemical standpoint and restrict ourselves to NMR. From the analytical point of view, NMR has pros and cons but does provide a peculiar holistic perspective that may speak for its future adoption as a population-wide health screening technique.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas/métodos
14.
J Proteome Res ; 17(1): 97-107, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29090929

RESUMO

In the era of precision medicine, the analysis of simple information like sex and age can increase the potential to better diagnose and treat conditions that occur more frequently in one of the two sexes, present sex-specific symptoms and outcomes, or are characteristic of a specific age group. We present here a study of the association networks constructed from an array of 22 plasma metabolites measured on a cohort of 844 healthy blood donors. Through differential network analysis we show that specific association networks can be associated with sex and age: Different connectivity patterns were observed, suggesting sex-related variability in several metabolic pathways (branched-chain amino acids, ketone bodies, and propanoate metabolism). Reduction in metabolite hub connectivity was also found to be associated with age in both sex groups. Network analysis was complemented with standard univariate and multivariate statistical analysis that revealed age- and sex-specific metabolic signatures. Our results demonstrate that the characterization of metabolite-metabolite association networks is a promising and powerful tool to investigate the human phenotype at a molecular level.


Assuntos
Fatores Etários , Sangue/metabolismo , Fatores Sexuais , Adolescente , Adulto , Idoso , Feminino , Voluntários Saudáveis , Humanos , Masculino , Redes e Vias Metabólicas , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Adulto Jovem
15.
Anal Bioanal Chem ; 409(5): 1405-1413, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27900420

RESUMO

The nuclear magnetic resonance (NMR)-based metabolomic approach was used as analytical methodology to study the urine samples of chronic inflammatory rheumatic disease (CIRD) patients. The urine samples of CIRD patients were compared to the ones of both healthy subjects and patients with multiple sclerosis (MS), another immuno-mediated disease. Urine samples collected from 39 CIRD patients, 25 healthy subjects, and 26 MS patients were analyzed using 1H NMR spectroscopy, and the NMR spectra were examined using partial least squares-discriminant analysis (PLS-DA). PLS-DA models were validated by a double cross-validation procedure and randomization tests. Clear discriminations between CIRD patients and healthy controls (average diagnostic accuracy 83.5 ± 1.9%) as well as between CIRD patients and MS patients (diagnostic accuracy 81.1 ± 1.9%) were obtained. Leucine, alanine, 3-hydroxyisobutyric acid, hippuric acid, citric acid, 3-hydroxyisovaleric acid, and creatinine contributed to the discrimination; all of them being in a lower concentration in CIRD patients as compared to controls or to MS patients. The application of NMR metabolomics to study these still poorly understood diseases can be useful to better clarify the pathologic mechanisms; moreover, as a holistic approach, it allowed the detection of, by means of anomalous metabolic traits, the presence of other pathologies or pharmaceutical treatments not directly connected to CIRDs, giving comprehensive information on the general health state of individuals. Graphical abstract NMR-based metabolomic approach as a tool to study urine samples in CIRD patients with respect to MS patients and healthy controls.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Doenças Reumáticas/urina , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/urina
16.
Life Sci ; 351: 122796, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852797

RESUMO

AIMS: Long-term oral anticoagulation is the primary therapy for preventing ischemic stroke in patients with atrial fibrillation (AF). Different types of oral anticoagulant drugs can have specific effects on the metabolism of patients. Here we characterize, for the first time, the serum metabolomic and lipoproteomic profiles of AF patients treated with anticoagulants: vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs). MATERIALS AND METHODS: Serum samples of 167 AF patients (median age 78 years, 62 % males, 70 % on DOACs treatment) were analyzed via high resolution 1H nuclear magnetic resonance (NMR) spectroscopy. Data on 25 metabolites and 112 lipoprotein-related fractions were quantified and analyzed with multivariate and univariate statistical approaches. KEY FINDINGS: Our data provide evidence that patients treated with VKAs and DOACs present significant differences in their profiles: lower levels of alanine and lactate (odds ratio: 1.72 and 1.84), free cholesterol VLDL-4 subfraction (OR: 1.75), triglycerides LDL-1 subfraction (OR: 1.80) and 4 IDL cholesterol fractions (ORs âˆ¼ 1.80), as well as higher levels of HDL cholesterol (OR: 0.48), apolipoprotein A1 (OR: 0.42) and 7 HDL cholesterol fractions/subfractions (ORs: 0.40-0.51) are characteristic of serum profile of patients on DOACs' therapy. SIGNIFICANCE: Our results support the usefulness of NMR-based metabolomics for the description of the effects of oral anticoagulants on AF patient circulating metabolites and lipoproteins. The higher serum levels of HDL cholesterol observed in patients on DOACs could contribute to explaining their reduced cardiovascular risk, suggesting the need of further studies in this direction to fully understand possible clinical implications.


Assuntos
Anticoagulantes , Fibrilação Atrial , Metabolômica , Vitamina K , Humanos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/sangue , Masculino , Feminino , Idoso , Vitamina K/antagonistas & inibidores , Anticoagulantes/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/administração & dosagem , Administração Oral , Idoso de 80 Anos ou mais , Metabolômica/métodos , Metaboloma/efeitos dos fármacos , Pessoa de Meia-Idade , Espectroscopia de Ressonância Magnética
17.
Front Mol Biosci ; 10: 1308500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099198

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common cause of dementia in the elderly population worldwide. Currently, there is no cure for AD, and the continuous increase in the number of susceptible individuals poses one of the most significant emerging threats to public health. However, the molecular pathways involved in the onset and progression of AD are not fully understood. This information is crucial for developing less invasive diagnostic instruments and discovering novel potential therapeutic targets. Metabolomics studies the complete ensemble of endogenous and exogenous metabolites present in biological specimens and may provide an interesting approach to identify alterations in multiple biochemical processes associated with AD onset and evolution. In this mini review, we summarize the results from metabolomic studies conducted using nuclear magnetic resonance (NMR) spectroscopy on human biological samples (blood derivatives, cerebrospinal fluid, urine, saliva, and tissues) from AD patients. We describe the metabolic alterations identified in AD patients compared to controls and to patients diagnosed with mild cognitive impairment (MCI). Moreover, we discuss the challenges and issues associated with the application of NMR-based metabolomics in the context of AD research.

18.
Metabolites ; 13(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837915

RESUMO

Colorectal cancer (CRC), one of the most prevalent and deadly cancers worldwide, generally evolves from adenomatous polyps. The understanding of the molecular mechanisms underlying this pathological evolution is crucial for diagnostic and prognostic purposes. Integrative systems biology approaches offer an optimal point of view to analyze CRC and patients with polyposis. The present study analyzed the association networks constructed from a publicly available array of 113 serum metabolites measured on a cohort of 234 subjects from three groups (66 CRC patients, 76 patients with polyposis, and 92 healthy controls), which concentrations were obtained via targeted liquid chromatography-tandem mass spectrometry. In terms of architecture, topology, and connectivity, the metabolite-metabolite association network of CRC patients appears to be completely different with respect to patients with polyposis and healthy controls. The most relevant nodes in the CRC network are those related to energy metabolism. Interestingly, phenylalanine, tyrosine, and tryptophan metabolism are found to be involved in both CRC and polyposis. Our results demonstrate that the characterization of metabolite-metabolite association networks is a promising and powerful tool to investigate molecular aspects of CRC.

19.
Prog Nucl Magn Reson Spectrosc ; 138-139: 105-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38065666

RESUMO

This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.


Assuntos
Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos
20.
iScience ; 26(10): 107678, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752948

RESUMO

Soft tissue sarcomas (STSs) are rare malignant tumors that are difficult to prognosticate using currently available instruments. Omics sciences could provide more accurate and individualized survival predictions for patients with metastatic STS. In this pilot, hypothesis-generating study, we integrated clinicopathological variables with proton nuclear magnetic resonance (1H NMR) plasma metabolomic and lipoproteomic profiles, capturing both tumor and host characteristics, to identify novel prognostic biomarkers of 2-year survival. Forty-five metastatic STS (mSTS) patients with prevalent leiomyosarcoma and liposarcoma histotypes receiving trabectedin treatment were enrolled. A score combining acetate, triglycerides low-density lipoprotein (LDL)-2, and red blood cell count was developed, and it predicts 2-year survival with optimal results in the present cohort (84.4% sensitivity, 84.6% specificity). This score is statistically significant and independent of other prognostic factors such as age, sex, tumor grading, tumor histotype, frailty status, and therapy administered. A nomogram based on these 3 biomarkers has been developed to inform the clinical use of the present findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA