Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Toxicol Appl Pharmacol ; : 117130, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39426530

RESUMO

Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of Mrp2 mRNA (53 %) as well as Mdr-1a and Mdr-1b (42 % and 59 %, respectively), compared to C (P < 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P < 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (P = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.

2.
Arch Toxicol ; 92(2): 777-788, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29052767

RESUMO

Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17ß-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bucladesina/farmacologia , Estradiol/análogos & derivados , Mucosa Intestinal/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Células CACO-2 , Membrana Celular/metabolismo , AMP Cíclico , Estradiol/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Ratos Wistar
3.
Toxicol Appl Pharmacol ; 303: 45-57, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27155371

RESUMO

The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Xenobióticos/farmacologia , Animais , Receptor Constitutivo de Androstano , Humanos , Mucosa Intestinal/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
4.
Pharmacol Res ; 109: 32-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27109321

RESUMO

The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well.


Assuntos
Intestinos/fisiologia , Intestinos/fisiopatologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Animais , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
5.
Toxicol Appl Pharmacol ; 287(2): 178-190, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26049102

RESUMO

The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 µM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glutationa Transferase/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteína de Ligação a CREB/metabolismo , Células CACO-2 , Colforsina/farmacologia , Dinitroclorobenzeno/farmacologia , Relação Dose-Resposta a Droga , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
6.
Antimicrob Agents Chemother ; 57(10): 4894-902, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877690

RESUMO

The effect of antichagasic benznidazole (BZL; 100 mg/kg body weight/day, 3 consecutive days, intraperitoneally) on biotransformation systems and ABC transporters was evaluated in rats. Expression of cytochrome P-450 (CYP3A), UDP-glucuronosyltransferase (UGT1A), glutathione S-transferases (alpha glutathione S-transferase [GST-α], GST-µ, and GST-π), multidrug-resistance-associated protein 2 (Mrp2), and P glycoprotein (P-gp) in liver, small intestine, and kidney was estimated by Western blotting. Increases in hepatic CYP3A (30%) and GST-µ (40%) and in intestinal GST-α (72% in jejunum and 136% in ileum) were detected. Significant increases in Mrp2 (300%) and P-gp (500%) proteins in liver from BZL-treated rats were observed without changes in kidney. P-gp and Mrp2 were also increased by BZL in jejunum (170% and 120%, respectively). In ileum, only P-gp was increased by BZL (50%). The activities of GST, P-gp, and Mrp2 correlated well with the upregulation of proteins in liver and jejunum. Plasma decay of a test dose of BZL (5 mg/kg body weight) administered intraduodenally was faster (295%) and the area under the concentration-time curve (AUC) was lower (41%) for BZL-pretreated rats than for controls. The biliary excretion of BZL was higher (60%) in the BZL group, and urinary excretion of BZL did not show differences between groups. The amount of absorbed BZL in intestinal sacs was lower (25%) in pretreated rats than in controls. In conclusion, induction of biotransformation enzymes and/or transporters by BZL could increase the clearance and/or decrease the intestinal absorption of coadministered drugs that are substrates of these systems, including BZL itself.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Nitroimidazóis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/metabolismo , Absorção Intestinal/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Nitroimidazóis/sangue , Nitroimidazóis/farmacocinética , Ratos
7.
Drug Metab Dispos ; 41(2): 275-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23077105

RESUMO

Multidrug resistance-associated protein 3 (Mrp3; Abcc3) expression and activity are up-regulated in rat liver after in vivo repeated administration of ethynylestradiol (EE), a cholestatic synthetic estrogen, whereas multidrug resistance-associated protein 2 (Mrp2) is down-regulated. This study was undertaken to determine whether Mrp3 induction results from a direct effect of EE, independent of accumulation of any endogenous common Mrp2/Mrp3 substrates resulting from cholestasis and the potential mediation of estrogen receptor (ER). In in vivo studies, male rats were given a single, noncholestatic dose of EE (5 mg/kg s.c.), and basal bile flow and the biliary excretion rate of bile salts and glutathione were measured 5 hours later. This treatment increased Mrp3 mRNA by 4-fold, detected by real-time polymerase chain reaction, despite the absence of cholestasis. Primary culture of rat hepatocytes incubated with EE (1-10 µM) for 5 hours exhibited a 3-fold increase in Mrp3 mRNA (10 µM), consistent with in vivo findings. The increase in Mrp3 mRNA by EE was prevented by actinomycin D, indicating transcriptional regulation. When hepatocytes were incubated with an ER antagonist [7α,17ß-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI182/780), 1 µM], in addition to EE, induction of Mrp3 mRNA was abolished, implicating ER as a key mediator. EE induced an increase in ER-α phosphorylation at 30 minutes and expression of c-Jun, a well-known ER target gene, at 60 minutes, as detected by Western blotting of nuclear extracts. These increases were prevented by ICI182/780. In summary, EE increased the expression of hepatic Mrp3 transcriptionally and independently of any cholestatic manifestation and required participation of an ER, most likely ER-α, through its phosphorylation.


Assuntos
Colestase/metabolismo , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Fígado/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Células Cultivadas , Colestase/genética , Dactinomicina/farmacologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Fulvestranto , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Regulação para Cima
8.
Nutrition ; 111: 112050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172454

RESUMO

OBJECTIVES: Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1-dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. METHODS: mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. RESULTS: Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. CONCLUSIONS: This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.


Assuntos
Dieta Hiperlipídica , Fator de Necrose Tumoral alfa , Camundongos , Animais , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Obesos , Rodamina 123 , Regulação para Baixo , Camundongos Endogâmicos C57BL , RNA Mensageiro , Resistência a Múltiplos Medicamentos
9.
Drug Metab Dispos ; 40(7): 1252-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453052

RESUMO

The ability of the liver, small intestine, and kidney to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), was assessed in rats treated with glucagon-like peptide 2 (GLP-2, 12 µg/100 g b.wt. s.c. every 12 h for 5 consecutive days). An in vivo perfused jejunum model with simultaneous bile and urine collection was used. A single intravenous dose of 30 µmol/kg b.wt. 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its conjugate, DNP-SG, and dinitrophenyl cysteinyl glycine (DNP-CG), resulting from the action of γ-glutamyltransferase on DNP-SG, were determined in bile, intestinal perfusate, and urine by high-performance liquid chromatography. Tissue content of DNP-SG was also assessed in liver, intestine, and kidneys. Biliary excretion of DNP-SG+DNP-CG was decreased in GLP-2 rats with respect to controls. In contrast, their intestinal excretion was substantially increased, whereas urinary elimination was not affected. Western blot and real-time polymerase chain reaction studies revealed preserved levels of Mrp2 protein and mRNA in liver and renal cortex and a significant increase in intestine in response to GLP-2 treatment. Tissue content of DNP-SG detected 5 min after CDNB administration was decreased in liver, increased in intestine, and unchanged in kidney in GLP-2 versus control group, consistent with GLP-2-induced down-regulation of expression of glutathione transferase (GST) Mu in liver and up-regulation of GST-Alpha in intestine at both protein and mRNA levels. In conclusion, GLP-2 induced selective changes in hepatic and intestinal disposition of a common GST and Mrp2 substrate administered systemically that could be of pharmacological or toxicological relevance under therapeutic treatment conditions.


Assuntos
Dinitroclorobenzeno/farmacocinética , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Jejuno/metabolismo , Rim/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bile/metabolismo , Dinitrobenzenos/metabolismo , Dinitroclorobenzeno/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Jejuno/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo
10.
Toxicology ; 460: 152873, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303734

RESUMO

Oxidative stress (OS) is a key factor in the development of gastrointestinal disorders, in which the intestinal barrier is altered. However, the Multidrug resistance-associated protein 2 (Mrp2) status, an essential component of the intestinal transcellular barrier exhibiting pharmaco-toxicological relevance by limiting the orally ingested toxicants and drugs absorption, has not been investigated. We here evaluated the short-term effect of OS on Mrp2 by treatment of isolated rat intestinal sacs with tert-butyl hydroperoxide (TBH) for 30 min. OS induction by TBH (250 and 500 µM) was confirmed by increased lipid peroxidation end products, decreased reduced glutathione (GSH) content and altered antioxidant enzyme activities. Under this condition, assessment of Mrp2 distribution between brush border (BBM) and intracellular (IM) membrane fractions, showed that Mrp2 protein decreased in BBM and increased in IM, consistent with an internalization process. This was associated with decreased efflux activity and, consequently, impaired barrier function. Subsequent incubation with N-Acetyl-L-Cysteine (NAC, 1 mM) reestablished GSH content and reverted concomitantly the alteration in Mrp2 localization and function induced by TBH. Cotreatment with a specific inhibitor of classic calcium-dependent Protein Kinase C (cPKC) implicated this kinase in TBH-effects. In conclusion, we demonstrated a negative posttranslational regulation of rat intestinal Mrp2 after short-term exposition to OS, a process likely mediated by cPKC and dependent on intracellular GSH content. The concomitant impairment of the Mrp2 barrier function may have implications in xenobiotic absorption and toxicity in a variety of human diseases linked to OS, with notable consequences on the toxicity/safety of therapeutic agents.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Microvilosidades/metabolismo , Estresse Oxidativo/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Relação Dose-Resposta a Droga , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Masculino , Microvilosidades/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Wistar , terc-Butil Hidroperóxido/toxicidade
11.
J Pharmacol Exp Ther ; 335(2): 332-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719938

RESUMO

The effects of glucagon-like peptide 2 (GLP-2) on expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2; Abcc2) and glutathione transferase (GST) were evaluated. After GLP-2 treatment (12 µg/100 g b.wt. s.c., every 12 h, for 5 consecutive days), Mrp2 and the α class of GST proteins and their corresponding mRNAs were increased, suggesting a transcriptional regulation. Mrp2 was localized at the apical membrane of the enterocyte in control and GLP-2 groups, as detected by confocal immunofluorescence microscopy. As a functional assay, everted intestinal sacs were incubated in the presence of 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl-S-glutathione (DNP-SG; model Mrp2 substrate), was detected in the same compartment by high-performance liquid chromatography. A significant increase in apical secretion of DNP-SG was detected in the GLP-2 group, consistent with simultaneous up-regulation of Mrp2 and GST. GLP-2 also promoted an increase in cAMP levels as detected in homogenates of intestinal mucosa. Treatment of rats with 2',3'-dideoxyadenosine (DDA), a specific inhibitor of adenylyl cyclase, abolished the increase in cAMP levels and Mrp2 protein promoted by GLP-2, suggesting cAMP as a mediator of Mrp2 modulation. Increased expression of Mrp2 and cAMP levels in response to GLP-2 occurred not only at the tip but also at the middle region of the villus, where constitutive expression of Mrp2 is normally low. In conclusion, our study suggests a role for GLP-2 in the prevention of cell toxicity of the intestinal mucosa by increasing Mrp2 chemical barrier function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Inibidores de Adenilil Ciclases , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Didesoxiadenosina/farmacologia , Enterócitos/efeitos dos fármacos , Enterócitos/enzimologia , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Imunofluorescência , Peptídeo 2 Semelhante ao Glucagon/fisiologia , Glutationa Transferase/biossíntese , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Jejuno/enzimologia , Jejuno/metabolismo , Jejuno/patologia , Lactação/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Toxicology ; 441: 152527, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553669

RESUMO

Multidrug resistance-associated protein 2 (Mrp2), expressed at the brush border membrane (BBM) of the enterocyte, is an ABC transporter with relevant intestinal barrier function. Its toxicological relevance lies in preventing absorption and tissue accumulation of dietary contaminants, drugs, and potentially harmful endogenous metabolites. Expression and activity of intestinal Mrp2 is downregulated in LPS-induced endotoxemia. In addition, confocal microscopy studies demonstrated internalization of the transporter to endocytic vesicles. Since IL-1ß plays an important role as early mediator of LPS-inflammatory responses, we evaluated whether IL-1ß mediates LPS-induced impairment of Mrp2 function. Two protocols were used: I) In vivo administration of LPS (5 mg/kg b.wt., i.p., single dose) to rats in simultaneous with administration of anti-IL-1ß (25 µg/kg b.wt., i.p., 4 doses), followed by studies of Mrp2 expression, localization and activity, 24 h after LPS administration; II) In vitro incubation of isolated intestinal sacs with IL-1ß (10 ng/mL) for 30 min, followed by analysis of Mrp2 activity and localization. We found that in vivo immunoneutralization of IL-1ß partially prevented the decrease of Mrp2 protein expression and activity as well as its internalization to intracellular domains induced by LPS. Involvement of IL-1ß in the alteration of Mrp2 localization and activity was more directly demonstrated in isolated intestinal sacs, as incubation with IL-1ß resulted in detection of Mrp2 in intracellular regions of the enterocyte in simultaneous with alteration of transport activity. In conclusion, IL-1ß induces early internalization of intestinal Mrp2, which could partially explain loss of expression at the BBM under conditions of experimental endotoxemia. Concomitant impairment of Mrp2-dependent barrier function may have pathophysiological relevance since IL-1ß mediates the effect of many local and systemic inflammatory processes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Endotoxemia/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Animais , Western Blotting , Endotoxemia/patologia , Feminino , Mucosa Intestinal/ultraestrutura , Microscopia Confocal , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
13.
Acta Physiol (Oxf) ; 230(4): e13514, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32476256

RESUMO

AIM: MRP2 is an intestinal ABC transporter that prevents the absorption of dietary xenobiotics. The aims of this work were: (1) to evaluate whether a short-term regulation of intestinal MRP2 barrier function takes place in vivo after luminal incorporation of nutrients and (2) to explore the underlying mechanism. METHODS: MRP2 activity and localization were assessed in an in vivo rat model with preserved irrigation and innervation. Nutrients were administered into distal jejunum. After 30-minutes treatments, MRP2 activity was assessed in proximal jejunum by quantifying the transport of the model substrate 2,4-dinitrophenyl-S-glutathione. MRP2 localization was determined by quantitative confocal microscopy. Participation of extracellular mediators was evaluated using selective inhibitors and by immunoneutralization. Intracellular pathways were explored in differentiated Caco-2 cells. RESULTS: Oleic acid, administered intraluminally at dietary levels, acutely stimulated MRP2 insertion into brush border membrane. This was associated with increased efflux activity and, consequently, enhanced barrier function. Immunoneutralization of the gut hormone glucagon-like peptide-2 (GLP-2) prevented oleic acid effect on MRP2, demonstrating the participation of this trophic factor as a main mediator. Further experiments using selective inhibitors demonstrated that extracellular adenosine synthesis and its subsequent binding to enterocytic A2B adenosine receptor (A2BAR) take place downstream GLP-2. Finally, studies in intestinal Caco-2 cells revealed the participation of A2BAR/cAMP/PKA intracellular pathway, ultimately leading to increased MRP2 localization in apical domains. CONCLUSION: These findings reveal an on-demand, acute regulation of MRP2-associated barrier function, constituting a novel physiological mechanism of protection against the absorption of dietary xenobiotics in response to food intake.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Peptídeo 2 Semelhante ao Glucagon , Animais , Células CACO-2 , Humanos , Mucosa Intestinal , Nutrientes , Ratos , Ratos Wistar
14.
Drug Metab Dispos ; 37(6): 1277-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19299525

RESUMO

The effect of the cholestatic estrogens ethynylestradiol (EE) and estradiol 17beta-D-glucuronide (E2-17G) on expression and activity of intestinal multidrug resistant-associated protein 2 (Mrp2, Abcc2) was studied in rats. Expression and localization of Mrp2 were evaluated by Western blotting, real-time polymerase chain reaction, and confocal immunofluorescence microscopy. Mrp2 transport activity toward dinitrophenyl-S-glutathione (DNP-SG) was assessed in vitro in intestinal sacs. EE, administered subcutaneously at a 5 mg/kg b.wt. dose, for 5 consecutive days, produced a marked decrease in Mrp2 expression at post-transcriptional level, without affecting its normal localization at the apical membrane of the enterocyte. This effect was selective because expression of other ATP-binding cassette proteins such as breast cancer resistance protein and Mrp3 were not affected and that of multidrug resistance protein 1 was only minimally impaired. Consistent with down-regulation of expression of Mrp2, a significant impairment in serosal to mucosal transport of DNP-SG and in protection against absorption of this same compound were registered. Simultaneous administration of EE with spironolactone (200 micromol/kg b.wt./day for 3 days), an Mrp2 inducer, prevented these alterations, confirming down-regulation of expression of Mrp2 by EE as a major component of functional changes. Incorporation of E2-17G (30 microM) in the serosal medium of intestinal sacs decreased serosal to mucosal transport of DNP-SG, probably because of competitive inhibition, without affecting normal Mrp2 expression or localization. Our data indicate impairment of function of intestinal Mrp2 by both cholestatic estrogens, although through a different mechanism. This finding represents an aggravation of deteriorated hepatic Mrp2 function that could further increase bioavailability of specific xenobiotics after oral exposure.


Assuntos
Colestase/metabolismo , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Mucosa Intestinal/metabolismo , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Wistar
15.
Curr Med Chem ; 26(7): 1155-1184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29589524

RESUMO

ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Miocárdio/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo
16.
Artigo em Inglês | MEDLINE | ID: mdl-31301398

RESUMO

In fish of freshwaters environments, the accumulation and toxic effects of arsenite (AsIII) can be attenuated by detoxification proteins such as GST and ABCC transporters. We studied the effects of AsIII on the middle intestine of O. mykiss in ex-vivo and in vivo/ex vivo assays. For the ex vivo assays, we measured the transport rate of the ABCC substrate DNP-SG and GST activity in intestinal strips and everted sacs. AsIII inhibited DNP-SG transport in a concentration-dependent manner, specifically when we applied it on the basolateral side. GST activity increased when we applied a maximum concentration of AsIII. For the in vivo/ex vivo assays, we kept fish in water with or without 7.7 µmol L-1 of AsIII for 48 h. Then, we measured DNP-SG transport rate, GST activity, and PP1 activity in intestine strips during one hour. For PP1 activity, we incubated the strips with or without microcystin-LR (MCLR), a toxin excreted through ABCC2 proteins. We also analyzed Abcc2 and Gst-π mRNA expression in intestine and liver tissue. In the group exposed in vivo to AsIII, DNP-SG transport rate and GST activity were higher and the effect of MCLR over PP1 activity was attenuated. AsIII significantly induced only Abcc2 mRNA expression in both middle intestine and liver. Our results suggest that, in the middle intestine of O. mykiss, AsIII is absorbed mainly at the basolateral side of the enterocytes, excreted to the lumen by ABCC2 transporters, and is capable of modulating Abcc2 mRNA expression by a transcriptional mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arsenitos , Glutationa S-Transferase pi/metabolismo , Intestinos/enzimologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Arsenitos/metabolismo , Arsenitos/farmacocinética , Arsenitos/toxicidade , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro , Xenobióticos/metabolismo , Xenobióticos/farmacocinética , Xenobióticos/toxicidade
17.
J Nutr Biochem ; 68: 7-15, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005848

RESUMO

Intestinal multidrug resistance-associated protein 2 is an ABC transporter that limits the absorption of xenobiotics ingested orally, thus acting as essential component of the intestinal biochemical barrier. Metabolic Syndrome (MetS) is a pathological condition characterized by dyslipidemia, hyperinsulinemia, insulin resistance, chronic inflammation, and oxidative stress (OS). In a previous study we demonstrated that MetS-like conditions induced by fructose in drinking water (10% v/v, during 21 days), significantly reduced the expression and activity of intestinal Mrp2 in rats. We here evaluated the potential beneficial effect of geraniol or vitamin C supplementation, natural compounds with anti-inflammatory and anti-oxidant properties, in reverse fructose-induced Mrp2 alterations. After MetS-like conditions were induced (21 days), animals were cotreated with geraniol or vitamin C or vehicle for another 14 days. Decreased expression of Mrp2 protein and mRNA due to fructose administration was reversed by geraniol and by vitamin C, consistent with restoration of Mrp2 activity evaluated in everted intestinal sacs. Concomitantly, increased intestinal IL-1ß and IL-6 levels induced by fructose were totally and partially counterbalanced, respectively, by geraniol administration. The intestinal redox unbalance generated by fructose was improved by geraniol and vitamin C, as evidenced by decreasing lipid peroxidation products and activity of Superoxide Dismutase and by normalizing glutathione reduced/oxidized glutathione ratio. The restoration effects exhibited by geraniol and vitamin C suggest that local inflammatory response and OS generated under MetS-like conditions represent important mediators of the intestinal Mrp2 down-regulation. Additionally, both agents could be considered of potential therapeutic value to preserve Mrp2 function under MetS conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Monoterpenos Acíclicos/farmacologia , Ácido Ascórbico/farmacologia , Frutose/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Peso Corporal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Glucose/metabolismo , Inflamação , Resistência à Insulina , Mucosa Intestinal/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Triglicerídeos/sangue
18.
Drug Metab Dispos ; 36(3): 475-80, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096675

RESUMO

Renal and intestinal disposition of acetaminophen glucuronide (APAP-GLU), a common substrate for multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), was assessed in bile duct-ligated rats (BDL) 7 days after surgery using an in vivo perfused jejunum model with simultaneous urine collection. Doses of 150 mg/kg b.w. (i.v.) or 1 g/kg b.w. (i.p.) of acetaminophen (APAP) were administered, and its glucuronide was determined in bile (only Shams), urine, and intestinal perfusate throughout a 150-min period. Intestinal excretion of APAP-GLU was unchanged or decreased (-58%) by BDL for the 150 mg and 1 g/kg b.w. doses of APAP, respectively. In contrast, renal excretion was increased by 200 and 320%, respectively. Western studies revealed decreased levels of apical Mrp2 in liver and jejunum but increased levels in renal cortex from BDL animals, whereas Mrp3 was substantially increased in liver and not affected in kidney or intestine. The global synthesis of APAP-GLU, determined as the sum of cumulative excretions, was higher in BDL rats (+51 and +110%) for these same doses of APAP as a consequence of a significant increase in functional liver mass, with no changes in specific glucuronidating activity. Expression of apical breast cancer resistance protein, which also transports nontoxic metabolites of APAP, was decreased by BDL in liver and renal cortex, suggesting a minor participation of this route. We demonstrate a more efficient hepatic synthesis and basolateral excretion of APAP-GLU followed by its urinary elimination in BDL group, the latter two processes consistent with up-regulation of liver Mrp3 and renal Mrp2.


Assuntos
Acetaminofen/análogos & derivados , Acetaminofen/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/administração & dosagem , Acetaminofen/urina , Animais , Ductos Biliares/cirurgia , Relação Dose-Resposta a Droga , Mucosa Intestinal/metabolismo , Rim/metabolismo , Ligadura , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Wistar
19.
Biochem Pharmacol ; 154: 118-126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684377

RESUMO

ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Anticoncepcionais/farmacologia , AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Megestrol/farmacologia , Norpregnadienos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , AMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos
20.
Eur J Pharm Sci ; 122: 205-213, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29981893

RESUMO

Multidrug resistance-associated protein 2 (MRP2) plays a key role in hepatic and intestinal disposition of endo- and xenobiotics. Several therapeutic agents modulate MRP2 activity resulting in pharmacological interactions. Nomegestrol acetate (NMGA) is a progestogen increasingly used in contraceptive formulations. The aim of this work was to evaluate the effect of NMGA on MRP2 activity in HepG2 and Caco-2 cells as models of human hepatocytes and enterocytes, respectively. NMGA (5, 50 and 500 nM; 48 h) decreased MRP2-mediated transport of 2,4-dinitrophenyl-S-glutathione in HepG2 cells, with no effect on MRP2 protein expression. Acute exposure (1 h) to the same concentrations of NMGA failed to affect MRP2 activity, ruling out an inhibitory action directly induced by the drug. In contrast, acute incubation with a lysate of HepG2 cells pre-treated with NMGA, containing potential metabolites, reproduced MRP2 inhibition. Preincubation of lysates with sulfatase but not with ß-glucuronidase abolished the inhibitory action, strongly suggesting participation of NMGA sulfated derivatives. Western blot studies in plasma vs. intracellular membrane fractions ruled out internalization of MRP2 to be responsible for the impairment of transport activity. MRP2-mediated transport of 5(6)-carboxy-2',7'-dichlorofluorescein was not affected in Caco-2 cells incubated for 48 h with either 5, 50 or 500 nM NMGA. Conversely, acute exposure (1 h) of Caco-2 cells to NMGA-treated HepG2 lysates decreased MRP2 activity, being this effect also prevented by pre-treatment of the lysates with sulfatase. Taken together, these findings demonstrate an inhibitory effect of NMGA sulfated metabolites on hepatic and intestinal MRP2 function. Extrapolated to the in vivo situation, they suggest the possibility of pharmacological interactions with coadministered drugs.


Assuntos
Anticoncepcionais/farmacologia , Megestrol/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Norpregnadienos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA