Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Mater ; 22(6): 762-768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142737

RESUMO

The generation of methane fuel using surplus renewable energy with CO2 as the carbon source enables both the decarbonization and substitution of fossil fuel feedstocks. However, high temperatures are usually required for the efficient activation of CO2. Here we present a solid catalyst synthesized using a mild, green hydrothermal synthesis that involves interstitial carbon doped into ruthenium oxide, which enables the stabilization of Ru cations in a low oxidation state and a ruthenium oxycarbonate phase to form. The catalyst shows an activity and selectivity for the conversion of CO2 into methane at lower temperatures than those of conventional catalysts, with an excellent long-term stability. Furthermore, this catalyst is able to operate under intermittent power supply conditions, which couples very well with electricity production systems based on renewable energies. The structure of the catalyst and the nature of the ruthenium species were acutely characterized by combining advanced imaging and spectroscopic tools at the macro and atomic scales, which highlighted the low-oxidation-state Ru sites (Run+, 0 < n < 4) as responsible for the high catalytic activity. This catalyst suggests alternative perspectives for materials design using interstitial dopants.

2.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430534

RESUMO

Nanostructured tungsten disulfide (WS2) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS2 layer using near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT). The W 4f and S 2p NAP-XPS spectra suggest that hydrogen makes physisorption on the WS2 active surface at room temperature and chemisorption on tungsten atoms at temperatures above 150 °C. DFT calculations show that a hydrogen molecule physically adsorbs on the defect-free WS2 monolayer, while it splits and makes chemical bonds with the nearest tungsten atoms on the sulfur point defect. The hydrogen adsorption on the sulfur defect causes a large charge transfer from the WS2 monolayer to the adsorbed hydrogen. In addition, it decreases the intensity of the in-gap state, which is generated by the sulfur point defect. Furthermore, the calculations explain the increase in the resistance of the gas sensor when hydrogen interacts with the WS2 active layer.

3.
J Am Chem Soc ; 144(33): 15363-15371, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960901

RESUMO

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2 fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

4.
Small ; 18(37): e2201351, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971163

RESUMO

Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light-harvesting properties. Besides, their extended π-conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three-dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm-2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one-hour reaction.


Assuntos
Hidrogênio , Nanoestruturas , Hidrogênio/química , Nanoestruturas/química , Processos Fotoquímicos , Polímeros , Água/química
5.
J Am Chem Soc ; 142(1): 318-326, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809033

RESUMO

Solar fuels production is a cornerstone in the development of emerging sustainable energy conversion and storage technologies. Light-induced H2 production from water represents one of the most crucial challenges to produce renewable fuel. Metal-organic frameworks (MOFs) are being investigated in this process, due to the ability to assemble new structures with the use of suitable photoactive building blocks. However, the identification of the reaction intermediates remains elusive, having negative impacts in the design of more efficient materials. Here, we report the synthesis and characterization of a new MOF prepared with the use of bismuth and dithieno[3,2-b:2',3'-d]thiophene-2,6-dicarboxylic acid (DTTDC), an electron-rich linker with hole transport ability. By combining theoretical studies and time-resolved spectroscopies, such as core hole clock and laser flash photolysis measurements, we have completed a comprehensive study at different time scales (fs to ms) to determine the effect of competitive reactions on the overall H2 production. We detect the formation of an intermediate radical anion upon reaction of photogenerated holes with an electron donor, which plays a key role in the photoelectrocatalytic processes. These results shed new light on the use of MOFs for solar fuel production.

6.
Phys Chem Chem Phys ; 21(35): 18893-18910, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441923

RESUMO

The atomic contributions to valence electronic structure for 37 ionic liquids (ILs) are identified using a combination of variable photon energy XPS, resonant Auger electron spectroscopy (RAES) and a subtraction method. The ILs studied include a diverse range of cationic and anionic structural moieties. We introduce a new parameter for ILs, the energy difference between the energies of the cationic and anionic highest occupied fragment orbitals (HOFOs), which we use to identify the highest occupied molecular orbital (HOMO). The anion gave rise to the HOMO for 25 of the 37 ILs studied here. For 10 of the ILs, the energies of the cationic and anionic HOFOs were the same (within experimental error); therefore, it could not be determined whether the HOMO was from the cation or the anion. For two of the ILs, the HOMO was from the cation and not from the anion; consequently it is energetically more favourable to remove an electron from the cation than the anion for these two ILs. In addition, we used a combination of area normalisation and subtraction of XP spectra to produce what are effectively XP spectra for individual ions; this was achieved for 10 cations and 14 anions.

7.
Phys Chem Chem Phys ; 18(12): 8608-24, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26947103

RESUMO

The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour.

8.
Chem Soc Rev ; 41(23): 7780-802, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22890419

RESUMO

Simple ionic liquids have long been held to be designer solvents, based upon the ability to independently vary their cations and anions. The formation of mixtures of ionic liquids increases this synthetic flexibility. We review the available literature of these ionic liquid mixtures to identify how their properties change and the possibility for their application.

9.
Nanoscale ; 15(3): 1068-1075, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541666

RESUMO

Dynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By in situ mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.

10.
ACS Appl Nano Mater ; 6(9): 7173-7185, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205295

RESUMO

Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35849480

RESUMO

The present study proposes a laser irradiation method to superficially reduce BiVO4 photoelectrodes and boost their water oxidation reaction performance. The origin of this enhanced performance toward oxygen evolution reaction (OER) was studied using a combination of a suite of structural, chemical, and mechanistic advanced characterization techniques including X-ray photoelectron (XPS), X-ray absorption spectroscopy (XAS), electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS), among others. We found that the reduction of the material is localized at the surface of the sample and that this effect creates effective n-type doping and a shift to more favorable energy band positions toward water oxidation. This thermodynamic effect, together with the change in sample morphology to larger and denser domains, results in an extended lifetime of the photogenerated carriers and improved charge extraction. In addition, the stability of the reduced sample in water was also confirmed. All of these effects result in a two-fold increase in the photocurrent density of the laser-treated samples.

12.
Nat Commun ; 13(1): 5080, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038555

RESUMO

Efficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale. Our results reveal that the components of milled catalysts have a higher ability to transform metallic Pd into Pd oxide species strongly interacting with the support, and achieve a modulated PdO/Pd ratio than traditionally-synthesized catalysts. We demonstrate that the unique structures attained by milling are key for the catalytic activity and correlate with higher methane conversion and longer stability in the wet feed.

13.
ACS Catal ; 12(21): 13781-13791, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366765

RESUMO

Hydrogen permeable electrodes can be utilized for electrolytic ammonia synthesis from dinitrogen, water, and renewable electricity under ambient conditions, providing a promising route toward sustainable ammonia. The understanding of the interactions of adsorbing N and permeating H at the catalytic interface is a critical step toward the optimization of this NH3 synthesis process. In this study, we conducted a unique in situ near ambient pressure X-ray photoelectron spectroscopy experiment to investigate the solid-gas interface of a Ni hydrogen permeable electrode under conditions relevant for ammonia synthesis. Here, we show that the formation of a Ni oxide surface layer blocks the chemisorption of gaseous dinitrogen. However, the Ni 2p and O 1s XPS spectra reveal that electrochemically driven permeating atomic hydrogen effectively reduces the Ni surface at ambient temperature, while H2 does not. Nitrogen gas chemisorbs on the generated metallic sites, followed by hydrogenation via permeating H, as adsorbed N and NH3 are found on the Ni surface. Our findings suggest that the first hydrogenation step to NH and the NH3 desorption might be limiting under the operating conditions. The study was then extended to Fe and Ru surfaces. The formation of surface oxide and nitride species on iron blocks the H permeation and prevents the reaction to advance; while on ruthenium, the stronger Ru-N bond might favor the recombination of permeating hydrogen to H2 over the hydrogenation of adsorbed nitrogen. This work provides insightful results to aid the rational design of efficient electrolytic NH3 synthesis processes based on but not limited to hydrogen permeable electrodes.

14.
Phys Chem Chem Phys ; 13(7): 2797-808, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21152618

RESUMO

Ionic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids. Here we demonstrate the nature and extent of surface charging in ionic liquids and model it using chronopotentiometry. We report the X-ray photoelectron spectra for a range of imidazolium based ionic liquids and investigate the use of long alkyl chains (C(n)H(2n+1), n ≥ 8) and the imidazolium nitrogen, both of which are part of the ionic liquid chemical structure, as internal references for charge correction. Accurate and reproducible binding energies are obtained which allow comparisons to be made across ionic liquid-based systems.

15.
Phys Chem Chem Phys ; 12(8): 1982-90, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20145868

RESUMO

Ultra high vacuum-spectroelectrochemistry was used to investigate the electrochemically generated Cu species in the ionic liquid (N-methylacetate)-4-picolinium bis(trisfluoromethylsulfonyl)imide, [MAP][Tf(2)N]. The diffusion of Cu(+) across the surface of the ionic liquid was monitored in situ by X-ray photoelectron spectroscopy (XPS). A numerical procedure was developed to simulate the surface process from which, the apparent diffusion coefficient of Cu(+) across the surface is estimated to be 3.5 x 10(-5) cm(2) s(-1). Bulk diffusion process of Cu(+) in [MAP][Tf(2)N] was investigated ex situ for comparison with the surface process.

16.
Phys Chem Chem Phys ; 11(38): 8544-55, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19774286

RESUMO

We report the enthalpies of vaporisation (measured using temperature programmed desorption by mass spectrometry) of twelve ionic liquids (ILs), covering four imidazolium, [C(m)C(n)Im]+, five pyrrolidinium, [C(n)C(m)Pyrr]+, two pyridinium, [C(n)Py]+, and a dication, [C3(C1Im)2]2+ based IL. These cations were paired with a range of anions: [BF4]-, [FeCl4]-, [N(CN)2]-, [PF3(C2F5)3]- ([FAP]-), [(CF3SO2)2N]- ([Tf2N]-) and [SCN]-. Using these results, plus those for a further eight imidazolium based ILs published earlier (which include the anions [CF3SO3]- ([TfO]-), [PF6]- and [EtSO4]-), we show that the enthalpies of vaporisation can be decomposed into three components. The first component is the Coulombic interaction between the ions, DeltaU(Cou,R), which is a function of the IL molar volume, V(m), and a parameter R(r) which quantifies the relative change in anion-cation distance on evaporation from the liquid phase to the ion pair in the gas phase. The second and third components are the van der Waals contributions from the anion, DeltaH(vdw,A), and the cation, DeltaH(vdw,C). We derive a universal value for R(r), and individual values of DeltaH(vdw,A) and DeltaH(vdw,C) for each of the anions and cations considered in this study. Given the molar volume, it is possible to estimate the enthalpies of vaporisation of ILs composed of any combination of the ions considered here; values for fourteen ILs which have not yet been studied experimentally are given.

17.
J Phys Chem Lett ; 9(24): 7192-7204, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30532979

RESUMO

After 40 years of research on photocatalytic CO2 reduction, there are still many unknowns about its mechanistic aspects even for the most common TiO2-based photocatalytic systems. These uncertainties include the pathways inducing visible-light activity in wide-band gap semiconductors, the charge transfer between semiconductors and plasmonic metal nanoparticles, the unambiguous determination of the origin of C-bearing products, the very first step in the activation of the CO2 molecule, the factors determining the selectivity, the reasons for photocatalyst deactivation, the closure of the catalytic cycle by the hole-scavenging reagent, and the detailed reaction pathways and the most suitable techniques for their determination. This Perspective discusses these controversial issues based on the most relevant investigations reported so far. For that purpose, we have tried to view the complex CO2 reduction in a holistic manner, considering today's state-of-the-art approaches, strategies, and techniques for the study of one of the hottest topics in energy research.

18.
Chem Commun (Camb) ; (46): 4866-8, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18361351

RESUMO

Monolayer adsorption of water onto an ionic liquid in ultra-high vacuum has been demonstrated, revealing a heat of adsorption which exceeds the heat of absorption into the bulk liquid by approximately 40 kJ mol(-1).

20.
Chem Sci ; 8(9): 6359-6374, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619199

RESUMO

The formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [C4C1im]+ cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and 129Xe NMR techniques. Anion size has the greatest effect on the spatial arrangement of the ILs and their mixtures in terms of the size of the non-polar domains and inter-ion distances. It was found that differences in coulombic attraction between oppositely charged ions arising from the distribution of charge density amongst the atoms of the anion also significantly influences these inter-ion distances. PALS and 129Xe NMR results pertaining to the free volume of these mixtures were found to strongly correlate with each other despite the vastly different timescales of these techniques. Furthermore, the excess free volumes calculated from each of these measurements were in excellent agreement with the excess volumes of mixing measured for the IL mixtures investigated. The correspondence of these techniques indicates that the static and dynamic free volume of these liquid mixtures are strongly linked. Consequently, fluxional processes such as hydrogen bonding do not significantly contribute to the free volumes of these liquids compared to the spatial arrangement of ions arising from their size, shape and coulombic attraction. Given the relationship between free volume and transport properties such as viscosity and conductivity, these results provide a link between the structures of IL mixtures, the thermodynamics of mixing and their physicochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA