RESUMO
Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%-24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population.
Assuntos
Lobos , Alelos , Animais , Feminino , Frequência do Gene , Variação Genética , Genética Populacional , Haplótipos , Endogamia , Masculino , Lobos/genéticaRESUMO
Autosomal recessive retinal degenerative diseases cause visual impairment and blindness in both humans and dogs. Currently, no standard treatment is available, but pioneering gene therapy-based canine models have been instrumental for clinical trials in humans. To study a novel form of retinal degeneration in Labrador retriever dogs with clinical signs indicating cone and rod degeneration, we used whole-genome sequencing of an affected sib-pair and their unaffected parents. A frameshift insertion in the ATP binding cassette subfamily A member 4 (ABCA4) gene (c.4176insC), leading to a premature stop codon in exon 28 (p.F1393Lfs*1395), was identified. In contrast to unaffected dogs, no full-length ABCA4 protein was detected in the retina of an affected dog. The ABCA4 gene encodes a membrane transporter protein localized in the outer segments of rod and cone photoreceptors. In humans, the ABCA4 gene is associated with Stargardt disease (STGD), an autosomal recessive retinal degeneration leading to central visual impairment. A hallmark of STGD is the accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE). The discovery of a canine homozygous ABCA4 loss-of-function mutation may advance the development of dog as a large animal model for human STGD.
Assuntos
Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/genética , Doenças do Cão/genética , Degeneração Macular/congênito , Mutação , Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/química , Membro 4 da Subfamília A de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Códon sem Sentido , Modelos Animais de Doenças , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Cães , Feminino , Genes Recessivos , Homozigoto , Humanos , Lipofuscina/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/veterinária , Masculino , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Insercional , Linhagem , Conformação Proteica , Retina/metabolismo , Retina/patologia , Doença de Stargardt , Sequenciamento Completo do GenomaRESUMO
Many genes are known to have an influence on conformation and performance traits; however, the role of one gene, Myostatin (MSTN), has been highlighted in recent studies on horses. Myostatin acts as a repressor in the development and regulation of differentiation and proliferative growth of skeletal muscle. Several studies have examined the link between MSTN, conformation, and performance in racing breeds, but no studies have investigated the relationship in Icelandic horses. Icelandic horses, a highly unique breed, are known both for their robust and compact conformation as well as their additional gaits tölt and pace. Three SNPs (g.65868604G>T [PR8604], g.66493737C>T [PR3737], and g.66495826A>G [PR5826]) flanking or within equine MSTN were genotyped in 195 Icelandic horses. The SNPs and haplotypes were analyzed for association with official estimated breeding values (EBV) for conformation traits (n = 11) and gaits (n = 5). The EBV for neck, withers, and shoulders was significantly associated with both PR8604 and PR3737 (P < 0.05). PR8604 was also associated with EBV for total conformation (P = 0.05). These associations were all supported by the haplotype analysis. However, while SNP PR5826 showed a significant association with EBVs for leg stance and hooves (P < 0.05), haplotype analyses for these traits failed to fully support these associations. This study demonstrates the possible role of MSTN on both the form and function of horses from non-racing breeds. Further analysis of Icelandic horses as well as other non-racing breeds would be beneficial and likely help to completely understand the influence of MSTN on conformation and performance in horses.
Assuntos
Marcha , Variação Genética , Miostatina/genética , Característica Quantitativa Herdável , Animais , Cruzamento , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos , Cavalos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoAssuntos
Cruzamento , Cavalos/genética , Miostatina/genética , Polimorfismo de Nucleotídeo Único , Animais , Frequência do Gene , Genótipo , Islândia , FenótipoRESUMO
The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328 bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.
Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Cavalos , Análise de Sequência de DNA/métodos , Animais , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Dosagem de Genes , Ordem dos Genes , Variação GenéticaRESUMO
Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted resequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrländer dogs. To our knowledge, this is the first time this family trio WGS-approach has been used successfully to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrländer dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences, and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G > C (p.R52P) was found to be concordant in eight additional cases, and 16 healthy Kromfohrländer dogs.
Assuntos
Doenças do Cão/genética , Doenças Genéticas Inatas/veterinária , Variação Genética , Estudo de Associação Genômica Ampla , Genoma , Genômica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Biologia Computacional , Cães , Estudos de Associação Genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Next generation sequencing (NGS) has traditionally been performed by large genome centers, but in recent years, the costs for whole-genome sequencing (WGS) have decreased substantially. With the introduction of smaller and less expensive "desktop" systems, NGS is now moving into the general laboratory. To evaluate the Ion Proton system for WGS we sequenced four Chinese Crested dogs and analyzed the data quality in terms of genome and exome coverage, the number of detected single nucleotide variants (SNVs) and insertions and deletions (INDELs) and the genotype concordance with the Illumina HD canine SNP array. For each of the four dogs, a 200 bp fragment library was constructed from genomic DNA and sequenced on two Ion PI chips per dog to reach mean coverage of 6-8x of the canine genome (genome size ≈ 2.4 Gb). RESULTS: On average, each Ion PI chip yielded approximately 73.3 million reads with a mean read length of 130 bp (~9.5 Gb sequence data) of which 98.5 % could be aligned to the canine reference genome (CanFam3.1). By sequencing a single dog using one fragment library and two Ion PI chips, on average 80 % of the genome and 77 % exome was covered by at least four reads. After removing duplicate reads (20.7 %) the mean coverage across the whole genome was 6x. Using sequence data from all four individuals (four fragment libraries and eight Ion PI chips) the genome and exome coverage could be further increased to 97.2 and 94.3 %, respectively. We detected 4.83 million unique SNPs and 6.10 million unique INDEL positions across all individuals. A comparison between SNP genotypes detected with the WGS and the 170 K Illumina HD canine SNP array showed 90 % concordance. CONCLUSIONS: We have evaluated whole-genome sequencing on the Ion Proton system for genetic variant detection in four Chinese crested dogs. Even though INDEL calling with Ion Proton data is challenging due to specific platform errors, in case of SNP calling it can serve as an alternative to other next-generation sequencing platforms and SNP genotyping arrays, in studies aiming to identify causative mutations for rare monogenic diseases. In addition, we have identified new genetic variants of the Chinese Crested dog that will contribute to further whole-genome sequencing studies aimed to identify mutations associated with monogenic diseases with autosomal recessive inheritance.
RESUMO
Equine Multiple Congenital Ocular Anomalies (MCOA) syndrome is a heritable eye disorder mainly affecting silver colored horses. Clinically, the disease manifests in two distinct classes depending on the horse genotype. Horses homozygous for the mutant allele present with a wide range of ocular defects, such as iris stromal hypoplasia, abnormal pectinate ligaments, megaloglobus, iridociliary cysts and cataracts. The phenotype of heterozygous horses is less severe and predominantly includes iridociliary cysts, which occasionally extend into the temporal retina. In order to determine the genetic cause of MCOA syndrome we sequenced the entire previously characterized 208 kilobase region on chromosome 6 in ten individuals; five MCOA affected horses from three different breeds, one horse with the intermediate Cyst phenotype and four unaffected controls from two different breeds. This was performed using Illumina TruSeq technology with paired-end reads. Through the systematic exclusion of all polymorphisms barring two SNPs in PMEL, a missense mutation previously reported to be associated with the silver coat colour and a non-conserved intronic SNP, we establish that this gene is responsible for MCOA syndrome. Our finding, together with recent advances that show aberrant protein function due to the coding mutation, suggests that the missense mutation is causative and has pleiotrophic effect, causing both the horse silver coat color and MCOA syndrome.