Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31529034

RESUMO

Glycan interactions with glycan-binding proteins (GBPs) play essential roles in a wide variety of cellular processes. Currently, the glycan specificities of GBPs are most often inferred from binding data generated using glycan arrays, wherein the GBP is incubated with oligosaccharides immobilized on a glass surface. Detection of glycan-GBP binding is typically fluorescence-based, involving the labeling of the GBP with a fluorophore or with biotin, which binds to fluorophore-labeled streptavidin, or using a fluorophore-labeled antibody that recognizes the GBP. While it is known that covalent labeling of a GBP may influence its binding properties, these effects have not been well studied and are usually overlooked when analyzing glycan array data. In the present study, electrospray ionization mass spectrometry (ESI-MS) was used to quantitatively evaluate the impact of GBP labeling on oligosaccharide affinities and specificities. The influence of three common labeling approaches, biotinylation, labeling with a fluorescent dye and introducing an iodination reagent, on the affinities of a series of human milk and blood group oligosaccharides for a C-terminal fragment of human galectin-3 was evaluated. In all cases labeling resulted in a measurable decrease in oligosaccharide affinity, by as much as 90%, and the magnitude of the change was sensitive to the nature of the ligand. These findings demonstrate that GBP labeling may affect both the absolute and relative affinities and, thereby, obscure the true glycan binding properties. These results also serve to illustrate the utility of the direct ESI-MS assay for quantitatively evaluating the effects of protein labeling on ligand binding.


Assuntos
Galectina 3/química , Biotinilação , Proteínas Sanguíneas , Corantes Fluorescentes/química , Galectina 3/metabolismo , Galectinas , Humanos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
2.
J Am Chem Soc ; 136(23): 8149-52, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24848432

RESUMO

We describe the rapid reaction of 2-amino benzamidoxime (ABAO) derivatives with aldehydes in water. The ABAO combines an aniline moiety for iminium-based activation of the aldehyde and a nucleophilic group (Nu:) ortho to the amine for intramolecular ring closure. The reaction between ABAO and aldehydes is kinetically similar to oxime formations performed under stoichiometric aniline catalysis. We characterized the reaction by both NMR and UV spectroscopy and determined that the rate-determining step of the process is formation of a Schiff base, which is followed by rapid intramolecular ring closure. The relationship between apparent rate constant and pH suggests that a protonated benzamidoxime acts as an internal general acid in Schiff-base formation. The reaction is accelerated by substituents in the aromatic ring that increase the basicity of the aromatic amine. The rate of up to 40 M(-1) s(-1) between an electron-rich aldehyde and 5-methoxy-ABAO (PMA), which was observed at pH 4.5, places this reaction among the fastest known bio-orthogonal reactions. Reaction between M13 phage-displayed library of peptides terminated with an aldehyde moiety and 1 mM biotin-ABAO derivative reaches completion in 1 h at pH 4.5. Finally, the product of reaction, dihydroquinazoline derivative, shows fluorescence at 490 nm suggesting a possibility of developing fluorogenic aldehyde-reactive probes based on ABAO framework.


Assuntos
Aldeídos/química , Benzamidinas/química , Oximas/química , Biblioteca de Peptídeos , Proteínas/química , Biotina/química , Ciclização , Concentração de Íons de Hidrogênio , Hidrólise , Estrutura Molecular , Bases de Schiff/química , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA