Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Brain ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753057

RESUMO

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
Chemistry ; 30(12): e202303904, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38116880

RESUMO

In this work, we present a metal-free coupling protocol for the regio- and stereoselective C3-thioarylation of 6-amino-2,3,6-trideoxy-d-manno-oct-2-ulosonic acid (iminoKdo). The developed procedure enables the coupling of electron-rich, electron-deficient, and hindered arylthiols, providing a series of C3-modified iminoKdo derivatives in moderate to good yields. Elucidation of active species through controlled experimental studies and time-lapse 31 P NMR analysis provides insights into the reaction mechanism. We demonstrate that, following a tandem Staudinger/aza-Wittig reaction of an azido-containing keto ester, an inseparable equimolar mixture of imine/enamine is formed. The enamine then undergoes a Stork-like nucleophilic attack with the in situ-formed disulfide reagent, resulting in the formation of the coupling products. Additionally, we describe a rarely reported acid-promoted aromatization of the C3-thioarylated iminoKdo skeleton into 3,6-disubstituted picolinates, which are reminiscent of dichotomines.

3.
Nucleic Acids Res ; 50(14): 7972-7990, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871303

RESUMO

Coactivator complexes regulate chromatin accessibility and transcription. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved coactivator complex. The core module scaffolds the entire SAGA complex and adopts a histone octamer-like structure, which consists of six histone-fold domain (HFD)-containing proteins forming three histone-fold (HF) pairs, to which the double HFD-containing SUPT3H adds one HF pair. Spt3, the yeast ortholog of SUPT3H, interacts genetically and biochemically with the TATA binding protein (TBP) and contributes to global RNA polymerase II (Pol II) transcription. Here we demonstrate that (i) SAGA purified from human U2OS or mouse embryonic stem cells (mESC) can assemble without SUPT3H, (ii) SUPT3H is not essential for mESC survival, but required for their growth and self-renewal, and (iii) the loss of SUPT3H from mammalian cells affects the transcription of only a specific subset of genes. Accordingly, in the absence of SUPT3H no major change in TBP accumulation at gene promoters was observed. Thus, SUPT3H is not required for the assembly of SAGA, TBP recruitment, or overall Pol II transcription, but plays a role in mESC growth and self-renewal. Our data further suggest that yeast and mammalian SAGA complexes contribute to transcription regulation by distinct mechanisms.


Assuntos
RNA Polimerase II , Transativadores , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
J Am Chem Soc ; 145(40): 21904-21914, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37771004

RESUMO

Transport of water across cell membranes is a fundamental process for important biological functions. Herein, we focused our research on a new type of symmetrical saccharide rim-functionalized pillar[5]arene (PA-S) artificial water channels with variable pore structures. To point out the versatility of PA-S channels, we systematically varied the nature of anchoring/gate keepers d-mannoside, d-mannuronic acid, or sialic acid H-bonding groups on lateral pillar[5]arene (PA) arms, known as good membrane adhesives, to best describe the influence of the chemical structure on their transport activity. The control of hydrophobic membrane binding-hydrophilic water binding balance is an important feature influencing the channels' structuration and efficiency for a proper insertion into bilayer membranes. The glycosylated PA channels' transport performances were assessed in lipid bilayer membranes, and the channels were able to transport water at high rates (∼106-107 waters/s/channel within 1 order of magnitude as for aquaporins), serving as selective proton railways with total Na+ and K+ rejection. Molecular simulation substantiates the idea that the PAs can generate supramolecular pores, featuring hydrophilic carbohydrate gate-keepers that serve as water-sponge relays at the channel entrance, effectively absorbing and redirecting water within the channel. The present channels may be regarded as a rare biomimetic example of artificial channels presenting proton vs cation transport selectivity performances.

5.
Bioorg Med Chem ; 69: 116896, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777270

RESUMO

There is a dearth of tuberculosis (TB) drug development activity as current therapeutic treatments are inadequate due to the appearance of drug-resistant TB. The enzyme UDP-galactopyranose mutase (UGM) is involved in the biosynthesis of galactan which is essential for cell wall integrity and bacterial viability. Its inhibition has thus been featured as profitable strategy for anti-TB drug discovery. In this study, we report on the synthesis of amides derived from rosmarinic acid, their inhibitory effect towards purified UGM using three distinct biochemical assays: FP, HPLC and SPR. The rosmarinic amides generally showed a significantly higher affinity for UGM than the corresponding rosmarinic ester. In particular, compound 5h displayed interesting binding affinity values (Kd = 58 ± 7, 63 ± 9 µM towards KpUGM and MtUGM respectively). Furthermore, a new UGM SPR assay was established and confirmed that 5h binds to UGM with a dissociation constant of 104.8 ± 6.5 µM. Collectively, this study validates the amide bioisosteric strategy which has been successfully implemented to develop UGM inhibitors from rosmarinic acid, providing a substantial basis for further design of novel UGM inhibitors and anti-mycobacterial agents.


Assuntos
Transferases Intramoleculares , Mycobacterium tuberculosis , Amidas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Inibidores Enzimáticos/química
6.
Genes Dev ; 28(18): 1999-2012, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25228644

RESUMO

The SAGA (Spt-Ada-Gcn5 acetyltransferase) coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Surprisingly, recent studies revealed little overlap between genome-wide SAGA-binding profiles and changes in gene expression upon depletion of subunits of the complex. As indicators of SAGA recruitment on chromatin, we monitored in yeast and human cells the genome-wide distribution of histone H3K9 acetylation and H2B ubiquitination, which are respectively deposited or removed by SAGA. Changes in these modifications after inactivation of the corresponding enzyme revealed that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. In agreement with this broad distribution, we show that SAGA plays a critical role for RNA polymerase II recruitment at all expressed genes. In addition, through quantification of newly synthesized RNA, we demonstrated that SAGA inactivation induced a strong decrease of mRNA synthesis at all tested genes. Analysis of the SAGA deubiquitination activity further revealed that SAGA acts on the whole transcribed genome in a very fast manner, indicating a highly dynamic association of the complex with chromatin. Thus, our study uncovers a new function for SAGA as a bone fide cofactor for all RNA polymerase II transcription.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Perfilação da Expressão Gênica , Genoma , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Ubiquitinação
7.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806465

RESUMO

Ubiquitin (ub) is a small, highly conserved protein widely expressed in eukaryotic cells. Ubiquitination is a post-translational modification catalyzed by enzymes that activate, conjugate, and ligate ub to proteins. Substrates can be modified either by addition of a single ubiquitin molecule (monoubiquitination), or by conjugation of several ubs (polyubiquitination). Monoubiquitination acts as a signaling mark to control diverse biological processes. The cellular and spatial distribution of ub is determined by the opposing activities of ub ligase enzymes, and deubiquitinases (DUBs), which remove ub from proteins to generate free ub. In mammalian cells, 1-2% of total histone H2B is monoubiquitinated. The SAGA (Spt Ada Gcn5 Acetyl-transferase) is a transcriptional coactivator and its DUB module removes ub from H2Bub1. The mammalian SAGA DUB module has four subunits, ATXN7, ATXN7L3, USP22, and ENY2. Atxn7l3-/- mouse embryos, lacking DUB activity, have a five-fold increase in H2Bub1 retention, and die at mid-gestation. Interestingly, embryos lacking the ub encoding gene, Ubc, have a similar phenotype. Here we provide a current overview of data suggesting that H2Bub1 retention on the chromatin in Atxn7l3-/- embryos may lead to an imbalance in free ub distribution. Thus, we speculate that ATXN7L3-containing DUBs impact the free cellular ub pool during development.


Assuntos
Histonas , Ubiquitina , Animais , Desenvolvimento Embrionário/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
8.
J Biol Chem ; 295(15): 5110-5123, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32107309

RESUMO

Despite impressive progress made over the past 20 years in our understanding of mycolylarabinogalactan-peptidoglycan (mAGP) biogenesis, the mechanisms by which the tubercle bacillus Mycobacterium tuberculosis adapts its cell wall structure and composition to various environmental conditions, especially during infection, remain poorly understood. Being the central portion of the mAGP complex, arabinogalactan (AG) is believed to be the constituent of the mycobacterial cell envelope that undergoes the least structural changes, but no reports exist supporting this assumption. Herein, using recombinantly expressed mycobacterial protein, bioinformatics analyses, and kinetic and biochemical assays, we demonstrate that the AG can be remodeled by a mycobacterial endogenous enzyme. In particular, we found that the mycobacterial GlfH1 (Rv3096) protein exhibits exo-ß-d-galactofuranose hydrolase activity and is capable of hydrolyzing the galactan chain of AG by recurrent cleavage of the terminal ß-(1,5) and ß-(1,6)-Galf linkages. The characterization of this galactosidase represents a first step toward understanding the remodeling of mycobacterial AG.


Assuntos
Amoeba/crescimento & desenvolvimento , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Amoeba/microbiologia , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/genética , Hidrólise , Cinética , Filogenia , Homologia de Sequência
9.
Biochem Soc Trans ; 49(5): 2051-2062, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415300

RESUMO

In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Animais , Feminino , Camundongos , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Gravidez , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
10.
Org Biomol Chem ; 19(8): 1818-1826, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565547

RESUMO

An in situ screening assay for UDP-galactopyranose mutase (UGM, an essential enzyme of M. tuberculosis cell wall biosynthesis) has been developed to discover novel UGM inhibitors. The approach is based on the amide-forming reaction of an amino acid core with various cinnamic acids, followed by a direct fluorescence polarization assay to identify the best UGM binders without isolation and purification of the screened ligands. This assay allows us to perform one-pot high-throughput synthesis and screening of enzyme inhibitors in a 384-well plate format. UGM ligands were successfully identified by this technology and their inhibition levels were established from pure synthetic compounds in vitro and in a whole cell antibacterial assay. This study provides a blueprint for designing enamide structures as new UGM inhibitors and anti-mycobacterial agents.


Assuntos
Aminoácidos/farmacologia , Antituberculosos/farmacologia , Cinamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antituberculosos/síntese química , Antituberculosos/metabolismo , Cinamatos/síntese química , Cinamatos/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/enzimologia , Mycobacterium tuberculosis/enzimologia , Ligação Proteica
11.
Org Biomol Chem ; 19(22): 4943-4948, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988211

RESUMO

d-glycero-d-manno-Heptose-1ß,7-bisphosphate (HBP) is a bacterial metabolite that can induce a TIFA-dependent innate immune response in mammals. It was recently discovered that after HBP enters into the cytoplasm of the host cell, it is transformed into ADP-heptose-7-phosphate, which then leads to ALPK1-TIFA-dependent inflammatory response. In order to provide a molecular tool allowing the discovery of the proteins involved in this novel inflammatory pathway, we designed and synthesized a biotinylated analogue of HBP. This chemical probe displays an anomeric ß-phosphate and a phosphonate at the 7-position, and a d-configured 6-position to which is attached the biotin moiety. To do so, different synthetic strategies were explored and described in this report. Moreover, we demonstrated that the biotinylated version of HBP is still biologically active and can activate the NF-κB pathway in HEK293T cells.


Assuntos
Heptoses
12.
Bioorg Med Chem ; 43: 116248, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274760

RESUMO

This study focuses on the synthesis of 1,7- and 3,4-indole-fused lactones via a simple and efficient reaction sequence. The functionalization of these "oxazepino-indole" and "oxepino-indole" tricycles is carried out by palladium catalysed CC coupling, nucleophilic substitution or 1,3-dipolar cycloaddition. The evaluation of their activity against Mycobacterium tuberculosis shows that the "oxazepino-indole" structure is a new inhibitor of M. tuberculosis growth in vitro.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
13.
Chem Soc Rev ; 49(12): 3863-3888, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32520059

RESUMO

This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.


Assuntos
Carboidratos/química , Sondas Moleculares/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glicosídeos/química , Halogenação , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
14.
Angew Chem Int Ed Engl ; 60(41): 22505-22512, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346553

RESUMO

Dynamic constitutional frameworks (DCFs) were synthesized and screened for biofilm inhibition or disruption. They are composed of a trialdehyde core reversibly linked to a diamine PEG connector and to a variety of neutral, anionic, or cationic heads, to generate a library of DCFs to generate multivalent dendritic architectures in the presence of Pseudomonas aeruginosa and Staphylococcus aureus. The best DCFs were always polycationic and the nature of the cationic heads significantly impact the antibiofilm activity. The best antibiofilm activity was observed for DCF3B, displaying a polyethyleneimine head. A simple inactive guanidinium functional head strongly inhibited biofilm growth when assayed as a multivalent DCF3C. Using a more advanced in vitro biofilm model of chronic wound infection, DCF3C was found significantly superior than all other DCFs. These results demonstrate the versatility and effectiveness of DCFs as low cost and efficient systems for antibiofilm disruption.


Assuntos
Antibacterianos/farmacologia , Polímeros/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polímeros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
15.
Development ; 144(20): 3808-3818, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893950

RESUMO

During development, tightly regulated gene expression programs control cell fate and patterning. A key regulatory step in eukaryotic transcription is the assembly of the pre-initiation complex (PIC) at promoters. PIC assembly has mainly been studied in vitro, and little is known about its composition during development. In vitro data suggest that TFIID is the general transcription factor that nucleates PIC formation at promoters. Here we show that TAF10, a subunit of TFIID and of the transcriptional co-activator SAGA, is required for the assembly of these complexes in the mouse embryo. We performed Taf10 conditional deletions during mesoderm development and show that Taf10 loss in the presomitic mesoderm (PSM) does not prevent cyclic gene transcription or PSM segmental patterning, whereas lateral plate differentiation is profoundly altered. During this period, global mRNA levels are unchanged in the PSM, with only a minor subset of genes dysregulated. Together, our data strongly suggest that the TAF10-containing canonical TFIID and SAGA complexes are dispensable for early paraxial mesoderm development, arguing against the generic role in transcription proposed for these fully assembled holo-complexes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica , Animais , Padronização Corporal , Diferenciação Celular , Núcleo Celular/metabolismo , Deleção de Genes , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo
16.
Chembiochem ; 21(20): 2982-2990, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32452604

RESUMO

d-Glycero-d-manno-heptose-1ß,7-bisphosphate (HBP) and d-glycero-d-manno-heptose-1ß-phosphate (H1P) are bacterial metabolites that were recently shown to stimulate inflammatory responses in host cells through the activation of the TIFA-dependent NF-κB pathway. To better understand structure-based activity in relation to this process, a family of nonhydrolyzable phosphonate analogues of HBP and H1P was synthesized. The inflammation modulation by which these molecules induce the TIFA-NF-κB signal axis was evaluated in vivo at a low-nanomolar concentration (6 nM) and compared to that of the natural metabolites. Our data showed that three phosphonate analogues had similar stimulatory activity to HBP, whereas two phosphonates antagonized HBP-induced TIFA-NF-κB signaling. These results open new horizons for the design of pro-inflammatory and innate immune modulators that could be used as vaccine adjuvant.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Heptoses/farmacologia , Inflamação/imunologia , NF-kappa B/imunologia , Fosfatos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Configuração de Carboidratos , Desenho de Fármacos , Heptoses/síntese química , Heptoses/química , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , NF-kappa B/genética , Fosfatos/síntese química , Fosfatos/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
17.
Bioorg Med Chem ; 28(13): 115579, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32546296

RESUMO

In this study, we screen three heterocyclic structures as potential inhibitors of UDP-galactopyranose mutase (UGM), an enzyme involved in the biosynthesis of the cell wall of Mycobacterium tuberculosis. In order to understand the binding mode, docking simulations are performed on the best inhibitors. Their activity on Mycobacterium tuberculosis is also evaluated. This study made it possible to highlight an "oxazepino-indole" structure as a new inhibitor of UGM and of M. tuberculosis growth in vitro.


Assuntos
4-Butirolactona/análogos & derivados , Antituberculosos/síntese química , Inibidores Enzimáticos/síntese química , Indóis/síntese química , Transferases Intramoleculares/antagonistas & inibidores , Tuberculose/tratamento farmacológico , 4-Butirolactona/síntese química , 4-Butirolactona/farmacologia , Antituberculosos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica
18.
PLoS Genet ; 13(9): e1007024, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945745

RESUMO

The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.


Assuntos
Necrose/genética , Espermatogênese/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Caspase 9/genética , Caspases/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/patologia , Homeostase/genética , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Masculino , Camundongos , Necrose/patologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
19.
Development ; 143(5): 872-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26839363

RESUMO

Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2. In Foxc1/2 double-mutant embryos, somitogenesis is severely affected, precluding analysis of somite derivatives. We have adopted a conditional approach whereby mutations in Foxc1 and Foxc2 genes were targeted to Pax3-expressing cells. Inclusion of a conditional reporter allele in the crosses made it possible to follow cells that had expressed Pax3. At the forelimb level, endothelial and myogenic cells migrate from adjacent somites into the limb bud. This population of endothelial cells is compromised in the double mutant, whereas excessive production of myogenic cells is observed in the trunk. However, strikingly, myogenic progenitors fail to enter the limbs, leading to the absence of skeletal muscle. Pax3-positive migratory myogenic progenitors, marked by expression of Lbx1, are specified in the somite at forelimb level, but endothelial progenitors are absent. The myogenic progenitors do not die, but differentiate prematurely adjacent to the somite. We conclude that the small proportion of somite-derived endothelial cells in the limb is required for the migration of myogenic limb progenitors.


Assuntos
Células Endoteliais/metabolismo , Membro Anterior/embriologia , Fatores de Transcrição Forkhead/genética , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição Box Pareados/metabolismo , Somitos/metabolismo , Animais , Movimento Celular , Separação Celular , Cruzamentos Genéticos , Feminino , Citometria de Fluxo , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Hibridização In Situ , Botões de Extremidades/embriologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Mutação , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Fenótipo
20.
Anal Chem ; 90(20): 12314-12321, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30284810

RESUMO

Many pathogens use host glycans as docking points for adhesion. Therefore, the use of compounds blocking carbohydrate-binding adhesins is a promising strategy for fighting infections. In this work, we describe a simple and rapid microarray approach for assessing the bacterial adhesion and efficiency of antiadhesive compounds targeting uropathogenic Escherichia coli UTI89, which displays mannose-specific adhesin FimH at the tip of fimbriae. The approach consisted in direct detection of live fluorescently labeled bacteria bound to mannan printed onto microarray slides. The utility of the arrays for binding/inhibition assays was first validated by comparing array-derived results for the model mannose-binding lectin concanavalin A with data obtained by isothermal titration calorimetry. Growth phase-dependent binding of UTI89 to the arrays was observed, proving the usefulness of the setup for detecting differences in FimH expression. Importantly, bacteria labeling and binding assays entailed minimal manipulation, helping to preserve the integrity of fimbriae. The efficiency of three different dodecamannosylated fullerenes as FimH-targeted antiadhesives was next evaluated in competition assays. The results revealed a superior activity of the mannofullerenes (5- to 18-fold per mannose residue) over methyl α-d-mannopyranoside. Moreover, differences in activity were detected for mannofullerenes differing in the structure/length of the spacer used for grafting mannose onto the fullerene core, further demonstrating the sensitivity of the assay. Overall, the approach combines straightforward and time-saving protocols for microarray preparation, bacteria labeling, and binding assays, and it can be easily tailored to other bacteria bearing carbohydrate-binding adhesins.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Fulerenos/farmacologia , Análise em Microsséries , Escherichia coli Uropatogênica/efeitos dos fármacos , Calorimetria , Concanavalina A/antagonistas & inibidores , Fímbrias Bacterianas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escherichia coli Uropatogênica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA