Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(7): 4059-74, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540200

RESUMO

A link between Tau phosphorylation and aggregation has been shown in different models for Alzheimer disease, including yeast. We used human Tau purified from yeast models to generate new monoclonal antibodies, of which three were further characterized. The first antibody, ADx201, binds the Tau proline-rich region independently of the phosphorylation status, whereas the second, ADx215, detects an epitope formed by the Tau N terminus when Tau is not phosphorylated at Tyr(18). For the third antibody, ADx210, the binding site could not be determined because its epitope is probably conformational. All three antibodies stained tangle-like structures in different brain sections of THY-Tau22 transgenic mice and Alzheimer patients, and ADx201 and ADx210 also detected neuritic plaques in the cortex of the patient brains. In hippocampal homogenates from THY-Tau22 mice and cortex homogenates obtained from Alzheimer patients, ADx215 consistently stained specific low order Tau oligomers in diseased brain, which in size correspond to Tau dimers. ADx201 and ADx210 additionally reacted to higher order Tau oligomers and presumed prefibrillar structures in the patient samples. Our data further suggest that formation of the low order Tau oligomers marks an early disease stage that is initiated by Tau phosphorylation at N-terminal sites. Formation of higher order oligomers appears to require additional phosphorylation in the C terminus of Tau. When used to assess Tau levels in human cerebrospinal fluid, the antibodies permitted us to discriminate patients with Alzheimer disease or other dementia like vascular dementia, indicative that these antibodies hold promising diagnostic potential.


Assuntos
Doença de Alzheimer/diagnóstico , Anticorpos Monoclonais , Encéfalo/patologia , Hipocampo/patologia , Proteínas tau/química , Proteínas tau/imunologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/imunologia , Animais , Biotinilação , Western Blotting , Encéfalo/imunologia , Encéfalo/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Imunização , Técnicas Imunoenzimáticas , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Emaranhados Neurofibrilares , Fragmentos de Peptídeos/metabolismo , Fosforilação , Placa Amiloide , Saccharomyces cerevisiae , Proteínas tau/líquido cefalorraquidiano
2.
Neurobiol Dis ; 82: 540-551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26385829

RESUMO

The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/patologia , Quebras de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Febre/tratamento farmacológico , Febre/metabolismo , Febre/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Azul de Metileno/farmacologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , RNA/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/patologia
3.
J Biol Chem ; 286(6): 4566-75, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21131359

RESUMO

Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute oxidative stress and mild heat stress (HS) induce the accumulation of dephosphorylated Tau in neuronal nuclei. Using chromatin immunoprecipitation assays, we demonstrate that the capacity of endogenous Tau to interact with neuronal DNA increased following HS. Comet assays performed on both wild-type and Tau-deficient neuronal cultures showed that Tau fully protected neuronal genomic DNA against HS-induced damage. Interestingly, HS-induced DNA damage observed in Tau-deficient cells was completely rescued after the overexpression of human Tau targeted to the nucleus. These results highlight a novel role for nuclear Tau as a key player in early stress response.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Resposta ao Choque Térmico , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Células Cultivadas , DNA/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia , Fosforilação/genética , Proteínas tau/genética
4.
Sci Rep ; 6: 33047, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605042

RESUMO

Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons.


Assuntos
Centrômero/genética , Reparo do DNA/genética , Heterocromatina/genética , Neurônios/metabolismo , Transcrição Gênica/genética , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quebras de DNA , Epigênese Genética/genética , Histonas/genética , Humanos , Lisina/genética , Camundongos , Camundongos Knockout
5.
PLoS One ; 9(10): e110422, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333276

RESUMO

The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.


Assuntos
Evolução Biológica , Fucosiltransferases/genética , Proteínas de Insetos/genética , Animais , Sequência de Bases , Clonagem Molecular , Éxons , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Genoma , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Insetos/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera/genética
6.
Front Cell Neurosci ; 8: 84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672431

RESUMO

Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer's disease (AD) brain.

7.
Methods Mol Biol ; 988: 59-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475714

RESUMO

Nowadays, recombinant proteins are used with great success for the treatment of a variety of medical conditions, such as cancer, autoimmune, and infectious diseases. Several expression systems have been developed to produce human proteins, but one of their most critical limitations is the addition of truncated or nonhuman glycans to the recombinant molecules. The presence of such glycans can be deleterious as they may alter the protein physicochemical properties (e.g., solubility, aggregation), its half-life, and its immunogenicity due to the unmasking of epitopes.The baculovirus expression system has long been used to produce recombinant proteins for research. Thanks to recent methodological advances, this cost-effective technology is now considered a very promising alternative for the production of recombinant therapeutics, especially vaccines. Studies on the lepidopteran cell metabolism have shown that these cells can perform most of the posttranslational modifications, including N- and O-glycosylation. However, these glycan structures are shorter compared to those present in mammalian proteins. Lepidopteran N-glycans are essentially of the oligomannose and paucimannose type with no complex glycan identified in both infected and uninfected cells. The presence of short N-glycan structures is explained by the low level of N-acetylglucosaminyltransferase I (GNT-I) activity and the absence of several other glycosyltransferases, such as GNT-II and ß1,4-galactosyltransferase I (ß1,4GalTI), and of sialyltransferases.In this chapter, we show that the glycosylation pathway of a lepidopteran cell line can be modified via infection with an engineered baculovirus to "humanize" the glycosylation pattern of a recombinant protein. This engineering has been performed by introducing in the baculovirus genome the cDNAs that encode three mammalian glycosyltransferases (GNT-I, GNT-II, and ß1,4GalTI). The efficiency of this approach is illustrated with the construction of a recombinant virus that can produce a galactosylated antibody.


Assuntos
Baculoviridae/genética , Engenharia Genética/métodos , Genoma Viral , Processamento de Proteína Pós-Traducional , Animais , Sequência de Carboidratos , Células Cultivadas , Clonagem Molecular , Galactose/metabolismo , Glicosilação , Glicosiltransferases/biossíntese , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Células Sf9 , Spodoptera , Coloração e Rotulagem , Transfecção , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA