RESUMO
The ventricular trabecular layer is crucial in embryonic life. In adults, the proportion of trabecular-to-compact myocardium varies substantially between individuals, within individuals over time, and yet exhibits almost no correlation to pump function since most individuals with excessive trabeculation are asymptomatic. The question of how functional is the myocardium of the trabecular layer, relative to the myocardium of the compact layer, has been difficult to answer but it is often assumed to be inferior. An answer is now emerging from recent advances and it can improve our understanding of how the trabecular layer impacts on pathogenicity. This narrative review concerns natural variation in trabeculation, tissue organization, transcriptomics, immunohistochemistry, vascularization, electrical propagation, diastolic function and compliance, systolic function, and ejection fraction. There are no overt transcriptional differences in the adult stage, and the myocardium is equally equipped with sarcomeric proteins, mitochondria, and vascular supply. The similar structural features are consistent with myocardium with a similar stroke work per gram tissue, along with a high ejection fraction of the trabecular layer. In conclusion, the myocardium of the trabecular and compact layers is highly similar and this offers a logical explanation for the reproducible observations that most individuals with excessive trabeculation are asymptomatic.
RESUMO
Left ventricular non-compaction (LVNC) with preserved ejection fraction (EF) is still a controverted entity. We aimed to characterize structural and functional changes in LVNC with heart failure with preserved EF (HFpEF). METHODS: We enrolled 21 patients with LVNC and HFpEF and 21 HFpEF controls. For all patients, we performed CMR, speckle tracking echocardiography (STE), and biomarker assessment for HFpEF (NT-proBNP), for myocardial fibrosis (Galectin-3), and for endothelial dysfunction [ADAMTS13, von Willebrand factor, and their ratio]. By CMR, we assessed native T1 and extracellular volume (ECV) for each LV level (basal, mid, and apical). By STE, we assessed longitudinal strain (LS), globally and at each LV level, base-to-apex gradient, LS layer by layer, from epicardium to endocardium, and transmural deformation gradient. RESULTS: In the LVNC group, mean NC/C ratio was 2.9 ± 0.4 and the percentage of NC myocardium mass was 24.4 ± 8.7%. LVNC patients, by comparison with controls, had higher apical native T1 (1061 ± 72 vs. 1008 ± 40 ms), diffusely increased ECV (27.2 ± 2.9 vs. 24.4 ± 2.5%), with higher values at the apical level (29.6 ± 3.8 vs. 25.2 ± 2.8%) (all p < 0.01); they had a lower LS only at the apical level (-21.4 ± 4.4 vs. -24.3 ± 3.2%), with decreased base-to-apex gradient (3.8 ± 4.7 vs. 6.9 ± 3.4%) and transmural deformation gradient (3.9 ± 0.8 vs. 4.8 ± 1.0%). LVNC patients had higher NT-proBNP [237 (156-489) vs. 156 (139-257) pg/mL] and Galectin-3 [7.3 (6.0-11.5) vs. 5.6 (4.8-8.3) ng/mL], and lower ADAMTS13 (767.3 ± 335.5 vs. 962.3 ± 253.7 ng/mL) and ADAMTS13/vWF ratio (all p < 0.05). CONCLUSION: LVNC patients with HFpEF have diffuse fibrosis, which is more extensive at the apical level, explaining the decrease in apical deformation and overexpression of Galectin-3. Lower transmural and base-to-apex deformation gradients underpin the sequence of myocardial maturation failure. Endothelial dysfunction, expressed by the lower ADAMTS13 and ADAMTS13/vWF ratio, may play an important role in the mechanism of HFpEF in patients with LVNC.
RESUMO
AIMS: None of the conventional echocardiographic parameters alone predict increased NTproBNP level and symptoms, making diagnosis of heart failure with preserved ejection fraction (HFpEF) very difficult in some cases, in resting condition. We evaluated LA functions by 2D speckle tracking echocardiography (STE) on top of conventional parameters in HFpEF and preHF patients with diastolic dysfunction (DD), in order to establish the added value of the LA deformation parameters in the diagnosis of HFpEF. METHODS: We prospectively enrolled 125 patients, 88 with HFpEF (68±9 yrs), and 37 asymptomatic with similar risk factors with DD (preHF) (61±8 yrs). We evaluated them by NTproBNP, conventional DD parameters, and STE. Global longitudinal strain (GS) was added. LA reservoir (R), conduit (C), and pump function (CT) were assessed both by volumetric and STE. 2 reservoir strain (S) derived indices were also measured, stiffness (SI) and distensibility index (DI). RESULTS: LA R and CT functions were significantly reduced in HFpEF compared to preHF group (all p<0.001), whereas conduit was similarly in both groups. SI was increased, whereas DI was reduced in HFpEF group (p<0.001). By adding LA strain analysis, from all echocardiographic parameters, SR_CT<-1.66/s and DI<0.57 (AUC = 0.76, p<0.001) demonstrated the highest accuracy to identify HFpEF diagnosis. However, by multivariate logistic regression, the model that best identifies HFpEF included only SR_CT, GS and sPAP (R2 = 0.506, p<0.001). Moreover, SR_CT, DI, and sPAP registered significant correlation with NTproBNP level. CONCLUSIONS: By adding LA functional analysis, we might improve the HFpEF diagnosis accuracy, compared to present guidelines. LA pump function is the only one able to differentiates preHF from HFpEF patients at rest. A value of SR_CT < -1.66/s outperformed conventional parameters from the scoring system, reservoir strain, and LA overload indices in HFpEF diagnosis. We suggest that LA function by STE could be incorporated in the current protocol for HFpEF diagnosis at rest as a major functional criterion, in order to improve diagnostic algorithm, and also in the follow-up of patients with risk factors and DD, as a prognostic marker. Future studies are needed to validate our findings.
Assuntos
Função do Átrio Esquerdo , Insuficiência Cardíaca , Ecocardiografia/métodos , Átrios do Coração/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Fatores de Risco , Volume Sistólico , Função Ventricular EsquerdaRESUMO
Carney complex (CNC) is a rare autosomal dominant syndrome. Spotty skin pigmentation is the major clinical manifestation of CNC, followed by cardiac myxomas, benign tumors that usually present with features from the classical triad of obstructive cardiac, embolic and non-specific constitutional symptoms (NCS). NCS are caused by the overproduction of interleukin-6 (IL-6), a pro-inflammatory cytokine which mediates the induction of intercellular adhesion molecule 1 (ICAM-1) and promotes endothelial dysfunction and atherosclerosis. Thus, myxomas may be directly linked to an increased risk of atherosclerotic events. We report here a case of a 74-year-old woman with left atrial myxoma, skin pigmentary abnormalities, thyroid disorder and extensive atherosclerosis, with non-embolic occlusion of infrarenal abdominal aorta.