Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
3.
Cell ; 173(7): 1573-1580, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906445

RESUMO

The evidence that most adult-onset common diseases have a polygenic genetic architecture fully consistent with robust biological systems supported by multiple back-up mechanisms is now overwhelming. In this context, we consider the recent "omnigenic" or "core genes" model. A key assumption of the model is that there is a relatively small number of core genes relevant to any disease. While intuitively appealing, this model may underestimate the biological complexity of common disease, and therefore, the goal to discover core genes should not guide experimental design. We consider other implications of polygenicity, concluding that a focus on patient stratification is needed to achieve the goals of precision medicine.


Assuntos
Doença/genética , Modelos Genéticos , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Medicina de Precisão
4.
Am J Hum Genet ; 110(2): 179-194, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634672

RESUMO

It has been 15 years since the advent of the genome-wide association study (GWAS) era. Here, we review how this experimental design has realized its promise by facilitating an impressive range of discoveries with remarkable impact on multiple fields, including population genetics, complex trait genetics, epidemiology, social science, and medicine. We predict that the emergence of large-scale biobanks will continue to expand to more diverse populations and capture more of the allele frequency spectrum through whole-genome sequencing, which will further improve our ability to investigate the causes and consequences of human genetic variation for complex traits and diseases.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Frequência do Gene , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
5.
Am J Hum Genet ; 110(7): 1207-1215, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379836

RESUMO

In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Herança Multifatorial/genética , Fenótipo , Simulação por Computador
6.
Am J Hum Genet ; 110(1): 30-43, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608683

RESUMO

Gene-based association tests aggregate multiple SNP-trait associations into sets defined by gene boundaries and are widely used in post-GWAS analysis. A common approach for gene-based tests is to combine SNPs associations by computing the sum of χ2 statistics. However, this strategy ignores the directions of SNP effects, which could result in a loss of power for SNPs with masking effects, e.g., when the product of two SNP effects and the linkage disequilibrium (LD) correlation is negative. Here, we introduce "mBAT-combo," a set-based test that is better powered than other methods to detect multi-SNP associations in the context of masking effects. We validate the method through simulations and applications to real data. We find that of 35 blood and urine biomarker traits in the UK Biobank, 34 traits show evidence for masking effects in a total of 4,273 gene-trait pairs, indicating that masking effects is common in complex traits. We further validate the improved power of our method in height, body mass index, and schizophrenia with different GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-combo with smaller sample sizes can be identified by the single-SNP approach with a 1.7-fold increase in sample sizes. Eleven genes significant only in mBAT-combo for schizophrenia are confirmed by functionally informed fine-mapping or Mendelian randomization integrating gene expression data. The framework of mBAT-combo can be applied to any set of SNPs to refine trait-association signals hidden in genomic regions with complex LD structures.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Desequilíbrio de Ligação , Genômica , Polimorfismo de Nucleotídeo Único/genética
7.
Proc Natl Acad Sci U S A ; 120(11): e2214834120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893272

RESUMO

Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.


Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Adulto , Humanos , Córtex Cerebral/anatomia & histologia , Córtex Pré-Frontal , Encéfalo
8.
PLoS Genet ; 19(11): e1011033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37963177

RESUMO

Vitamin D status-a complex trait influenced by environmental and genetic factors-is tightly associated with skin colour and ancestry. Yet very few studies have investigated the genetic underpinnings of vitamin D levels across diverse ancestries, and the ones that have, relied on small sample sizes, resulting in inconclusive results. Here, we conduct genome-wide association studies (GWAS) of 25 hydroxyvitamin D (25OHD)-the main circulating form of vitamin D-in 442,435 individuals from four broad genetically-determined ancestry groups represented in the UK Biobank: European (N = 421,867), South Asian (N = 9,983), African (N = 8,306) and East Asian (N = 2,279). We identify a new genetic determinant of 25OHD (rs146759773) in individuals of African ancestry, which was not detected in previous analysis of much larger European cohorts due to low minor allele frequency. We show genome-wide significant evidence of dominance effects in 25OHD that protect against vitamin D deficiency. Given that key events in the synthesis of 25OHD occur in the skin and are affected by pigmentation levels, we conduct GWAS of 25OHD stratified by skin colour and identify new associations. Lastly, we test the interaction between skin colour and variants associated with variance in 25OHD levels and identify two loci (rs10832254 and rs1352846) whose association with 25OHD differs in individuals of distinct complexions. Collectively, our results provide new insights into the complex relationship between 25OHD and skin colour and highlight the importance of diversity in genomic studies. Despite the much larger rates of vitamin D deficiency that we and others report for ancestry groups with dark skin (e.g., South Asian), our study highlights the importance of considering ancestral background and/or skin colour when assessing the implications of low vitamin D.


Assuntos
Estudo de Associação Genômica Ampla , Deficiência de Vitamina D , Humanos , Polimorfismo de Nucleotídeo Único/genética , Vitamina D/genética , Deficiência de Vitamina D/genética
9.
Hum Mol Genet ; 32(11): 1912-1921, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36790133

RESUMO

Testing the effect of rare variants on phenotypic variation is difficult due to the need for extremely large cohorts to identify associated variants given expected effect sizes. An alternative approach is to investigate the effect of rare genetic variants on DNA methylation (DNAm) as effect sizes are expected to be larger for molecular traits compared with complex traits. Here, we investigate DNAm in healthy ageing populations-the Lothian Birth Cohorts of 1921 and 1936-and identify both transient and stable outlying DNAm levels across the genome. We find an enrichment of rare genetic single nucleotide polymorphisms (SNPs) within 1 kb of DNAm sites in individuals with stable outlying DNAm, implying genetic control of this extreme variation. Using a family-based cohort, the Brisbane Systems Genetics Study, we observed increased sharing of DNAm outliers among more closely related individuals, consistent with these outliers being driven by rare genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on gene expression levels, with extreme levels of DNAm being associated with gene expression levels toward the tails of the population distribution. This study demonstrates the role of rare SNPs in the phenotypic variation of DNAm and the effect of extreme levels of DNAm on gene expression.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Humanos , Metilação de DNA/genética , Fenótipo , Herança Multifatorial , Epigênese Genética
10.
Proc Natl Acad Sci U S A ; 119(31): e2121279119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905320

RESUMO

Genetically informed, deep-phenotyped biobanks are an important research resource and it is imperative that the most powerful, versatile, and efficient analysis approaches are used. Here, we apply our recently developed Bayesian grouped mixture of regressions model (GMRM) in the UK and Estonian Biobanks and obtain the highest genomic prediction accuracy reported to date across 21 heritable traits. When compared to other approaches, GMRM accuracy was greater than annotation prediction models run in the LDAK or LDPred-funct software by 15% (SE 7%) and 14% (SE 2%), respectively, and was 18% (SE 3%) greater than a baseline BayesR model without single-nucleotide polymorphism (SNP) markers grouped into minor allele frequency-linkage disequilibrium (MAF-LD) annotation categories. For height, the prediction accuracy R2 was 47% in a UK Biobank holdout sample, which was 76% of the estimated [Formula: see text]. We then extend our GMRM prediction model to provide mixed-linear model association (MLMA) SNP marker estimates for genome-wide association (GWAS) discovery, which increased the independent loci detected to 16,162 in unrelated UK Biobank individuals, compared to 10,550 from BoltLMM and 10,095 from Regenie, a 62 and 65% increase, respectively. The average [Formula: see text] value of the leading markers increased by 15.24 (SE 0.41) for every 1% increase in prediction accuracy gained over a baseline BayesR model across the traits. Thus, we show that modeling genetic associations accounting for MAF and LD differences among SNP markers, and incorporating prior knowledge of genomic function, is important for both genomic prediction and discovery in large-scale individual-level studies.


Assuntos
Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Medicina de Precisão , Característica Quantitativa Herdável , Teorema de Bayes , Inglaterra , Estônia , Genômica , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Am J Hum Genet ; 108(8): 1488-1501, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214457

RESUMO

Across species, offspring of related individuals often exhibit significant reduction in fitness-related traits, known as inbreeding depression (ID), yet the genetic and molecular basis for ID remains elusive. Here, we develop a method to quantify enrichment of ID within specific genomic annotations and apply it to human data. We analyzed the phenomes and genomes of ∼350,000 unrelated participants of the UK Biobank and found, on average of over 11 traits, significant enrichment of ID within genomic regions with high recombination rates (>21-fold; p < 10-5), with conserved function across species (>19-fold; p < 10-4), and within regulatory elements such as DNase I hypersensitive sites (∼5-fold; p = 8.9 × 10-7). We also quantified enrichment of ID within trait-associated regions and found suggestive evidence that genomic regions contributing to additive genetic variance in the population are enriched for ID signal. We find strong correlations between functional enrichment of SNP-based heritability and that of ID (r = 0.8, standard error: 0.1). These findings provide empirical evidence that ID is most likely due to many partially recessive deleterious alleles in low linkage disequilibrium regions of the genome. Our study suggests that functional characterization of ID may further elucidate the genetic architectures and biological mechanisms underlying complex traits and diseases.


Assuntos
Estudo de Associação Genômica Ampla , Genômica/métodos , Depressão por Endogamia/genética , Desequilíbrio de Ligação , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino
12.
Am J Hum Genet ; 108(5): 786-798, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811805

RESUMO

Non-additive genetic variance for complex traits is traditionally estimated from data on relatives. It is notoriously difficult to estimate without bias in non-laboratory species, including humans, because of possible confounding with environmental covariance among relatives. In principle, non-additive variance attributable to common DNA variants can be estimated from a random sample of unrelated individuals with genome-wide SNP data. Here, we jointly estimate the proportion of variance explained by additive (hSNP2), dominance (δSNP2) and additive-by-additive (ηSNP2) genetic variance in a single analysis model. We first show by simulations that our model leads to unbiased estimates and provide a new theory to predict standard errors estimated using either least-squares or maximum likelihood. We then apply the model to 70 complex traits using 254,679 unrelated individuals from the UK Biobank and 1.1 M genotyped and imputed SNPs. We found strong evidence for additive variance (average across traits h¯SNP2=0.208). In contrast, the average estimate of δ¯SNP2 across traits was 0.001, implying negligible dominance variance at causal variants tagged by common SNPs. The average epistatic variance η¯SNP2 across the traits was 0.055, not significantly different from zero because of the large sampling variance. Our results provide new evidence that genetic variance for complex traits is predominantly additive and that sample sizes of many millions of unrelated individuals are needed to estimate epistatic variance with sufficient precision.


Assuntos
Conjuntos de Dados como Assunto , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Bancos de Espécimes Biológicos , Epistasia Genética , Feminino , Genótipo , Humanos , Masculino , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes , Reino Unido
13.
N Engl J Med ; 385(1): 78-86, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192436

RESUMO

Companies have recently begun to sell a new service to patients considering in vitro fertilization: embryo selection based on polygenic scores (ESPS). These scores represent individualized predictions of health and other outcomes derived from genomewide association studies in adults to partially predict these outcomes. This article includes a discussion of many factors that lower the predictive power of polygenic scores in the context of embryo selection and quantifies these effects for a variety of clinical and nonclinical traits. Also discussed are potential unintended consequences of ESPS (including selecting for adverse traits, altering population demographics, exacerbating inequalities in society, and devaluing certain traits). Recommendations for the responsible communication about ESPS by practitioners are provided, and a call for a society-wide conversation about this technology is made. (Funded by the National Institute on Aging and others.).


Assuntos
Embrião de Mamíferos , Fertilização in vitro , Testes Genéticos , Variação Genética , Herança Multifatorial/genética , Fenótipo , Diagnóstico Pré-Implantação , Escolaridade , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Valor Preditivo dos Testes
14.
PLoS Genet ; 17(5): e1009548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014919

RESUMO

Fisher's partitioning of genotypic values and genetic variance is highly relevant in the current era of genome-wide association studies (GWASs). However, despite being more than a century old, a number of persistent misconceptions related to nonadditive genetic effects remain. We developed a user-friendly web tool, the Falconer ShinyApp, to show how the combination of gene action and allele frequencies at causal loci translate to genetic variance and genetic variance components for a complex trait. The app can be used to demonstrate the relationship between a SNP effect size estimated from GWAS and the variation the SNP generates in the population, i.e., how locus-specific effects lead to individual differences in traits. In addition, it can also be used to demonstrate how within and between locus interactions (dominance and epistasis, respectively) usually do not lead to a large amount of nonadditive variance relative to additive variance, and therefore, that these interactions usually do not explain individual differences in a population.


Assuntos
Genes/genética , Variação Genética , Estudo de Associação Genômica Ampla , Internet , Software , Epistasia Genética , Frequência do Gene , Genes Dominantes , Loci Gênicos/genética , Genótipo , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
15.
PLoS Genet ; 16(9): e1008780, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925905

RESUMO

Genome-Wide Association Studies (GWAS) in large human cohorts have identified thousands of loci associated with complex traits and diseases. For identifying the genes and gene-associated variants that underlie complex traits in livestock, especially where sample sizes are limiting, it may help to integrate the results of GWAS for equivalent traits in humans as prior information. In this study, we sought to investigate the usefulness of results from a GWAS on human height as prior information for identifying the genes and gene-associated variants that affect stature in cattle, using GWAS summary data on samples sizes of 700,000 and 58,265 for humans and cattle, respectively. Using Fisher's exact test, we observed a significant proportion of cattle stature-associated genes (30/77) that are also associated with human height (odds ratio = 5.1, p = 3.1e-10). Result of randomized sampling tests showed that cattle orthologs of human height-associated genes, hereafter referred to as candidate genes (C-genes), were more enriched for cattle stature GWAS signals than random samples of genes in the cattle genome (p = 0.01). Randomly sampled SNPs within the C-genes also tend to explain more genetic variance for cattle stature (up to 13.2%) than randomly sampled SNPs within random cattle genes (p = 0.09). The most significant SNPs from a cattle GWAS for stature within the C-genes did not explain more genetic variance for cattle stature than the most significant SNPs within random cattle genes (p = 0.87). Altogether, our findings support previous studies that suggest a similarity in the genetic regulation of height across mammalian species. However, with the availability of a powerful GWAS for stature that combined data from 8 cattle breeds, prior information from human-height GWAS does not seem to provide any additional benefit with respect to the identification of genes and gene-associated variants that affect stature in cattle.


Assuntos
Estatura/genética , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Animais , Cruzamento/métodos , Bases de Dados Genéticas , Variação Genética/genética , Humanos , Gado/genética , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
16.
Mol Psychiatry ; 26(6): 2070-2081, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32398722

RESUMO

Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium-schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genome-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. We show that decreased expression of VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of SCZ and BIP.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Esquizofrenia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
19.
Mol Biol Evol ; 37(10): 3076-3080, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442309

RESUMO

We report on the first meeting of SMBE in Africa. SMBE Malawi was initiated to bring together African and international researchers who use genetics or genomics to study natural systems impacted by human activities. The goals of this conference were 1) to reach a world-class standard of science with a large number of contributions from Africa, 2) to initiate exchange between African and international researchers, and 3) to identify challenges and opportunities for evolutionary genomics research in Africa. As repored, we think that we have achieved these goals and make suggestions on the way forward for African evolutionary genomics research.


Assuntos
Evolução Biológica , Genômica , Animais , Humanos , Malaui
20.
Hum Mol Genet ; 28(17): 2976-2986, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044242

RESUMO

Despite extensive sex differences in human complex traits and disease, the male and female genomes differ only in the sex chromosomes. This implies that most sex-differentiated traits are the result of differences in the expression of genes that are common to both sexes. While sex differences in gene expression have been observed in a range of different tissues, the biological mechanisms for tissue-specific sex differences (TSSDs) in gene expression are not well understood. A total of 30 640 autosomal and 1021 X-linked transcripts were tested for heterogeneity in sex difference effect sizes in n = 617 individuals across 40 tissue types in Genotype-Tissue Expression (GTEx). This identified 65 autosomal and 66 X-linked TSSD transcripts (corresponding to unique genes) at a stringent significance threshold. Results for X-linked TSSD transcripts showed mainly concordant direction of sex differences across tissues and replicate previous findings. Autosomal TSSD transcripts had mainly discordant direction of sex differences across tissues. The top cis-expression quantitative trait loci (eQTLs) across tissues for autosomal TSSD transcripts are located a similar distance away from the nearest androgen and estrogen binding motifs and the nearest enhancer, as compared to cis-eQTLs for transcripts with stable sex differences in gene expression across tissue types. Enhancer regions that overlap top cis-eQTLs for TSSD transcripts, however, were found to be more dispersed across tissues. These observations suggest that androgen and estrogen regulatory elements in a cis region may play a common role in sex differences in gene expression, but TSSD in gene expression may additionally be due to causal variants located in tissue-specific enhancer regions.


Assuntos
Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Mapeamento Geográfico , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sequências Reguladoras de Ácido Nucleico , Fatores Sexuais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA