Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 70: 102203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156373

RESUMO

Helicobacter pylori is an important human pathogen with increasing antimicrobial resistance to standard-of-care antibiotics. Treatment generally includes a combination of classical broad-spectrum antibiotics and a proton-pump inhibitor, which often leads to perturbation of the gut microbiome and the potential for the development of antibiotic resistance. In this review, we examine reports, primarily from the past decade, on the discovery of new anti-H. pylori therapeutics, including approaches to develop narrow-spectrum and mechanistically unique antibiotics to treat these infections in their gastric niche. Compound series that target urease, respiratory complex I, and menaquinone biosynthesis are discussed in this context, along with bivalent antibiotic approaches that suppress resistance development. With increases in the understanding of the unique physiology of H. pylori and technological advances in the field of antibacterial drug discovery, there is a clear promise that novel therapeutics can be developed to effectively treat H. pylori infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Descoberta de Drogas
2.
ACS Infect Dis ; 7(12): 3210-3223, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34786940

RESUMO

Fungal fatty acid (FA) synthase and desaturase enzymes are essential for the growth and virulence of human fungal pathogens. These enzymes are structurally distinct from their mammalian counterparts, making them attractive targets for antifungal development. However, there has been little progress in identifying chemotypes that target fungal FA biosynthesis. To accomplish this, we applied a whole-cell-based method known as Target Abundance-based FItness Screening using Candida albicans. Strains with varying levels of FA synthase or desaturase expression were grown in competition to screen a custom small-molecule library. Hit compounds were defined as preferentially inhibiting the growth of the low target-expressing strains. Dose-response experiments confirmed that 16 hits (11 with an acyl hydrazide core) differentially inhibited the growth of strains with an altered desaturase expression, indicating a specific chemical-target interaction. Exogenous unsaturated FAs restored C. albicans growth in the presence of inhibitory concentrations of the most potent acyl hydrazides, further supporting the primary mechanism being inhibition of FA desaturase. A systematic analysis of the structure-activity relationship confirmed the acyl hydrazide core as essential for inhibitory activity. This collection demonstrated broad-spectrum activity against Candida auris and mucormycetes and retained the activity against azole-resistant candida isolates. Finally, a preliminary analysis of toxicity to mammalian cells identified potential lead compounds with desirable selectivities. Collectively, these results establish a scaffold that targets fungal FA biosynthesis with a potential for development into novel therapeutics.


Assuntos
Candida auris , Candida , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Ácidos Graxos , Humanos
3.
ACS Infect Dis ; 7(5): 1044-1058, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33471519

RESUMO

The successful treatment of Helicobacter pylori infections is becoming increasingly difficult due to the rise of resistance against current broad spectrum triple therapy regimens. In the search for narrow-spectrum agents against H. pylori, a high-throughput screen identified two structurally related thienopyrimidine compounds that selectively inhibited H. pylori over commensal members of the gut microbiota. To develop the structure-activity relationship (SAR) of the thienopyrimidines against H. pylori, this study employed four series of modifications in which systematic substitution to the thienopyrimidine core was explored and ultimately side-chain elements optimized from the two original hits were merged into lead compounds. During the development of this series, the mode of action studies identified H. pylori's respiratory complex I subunit NuoD as the target for lead thienopyrimidines. As this enzyme complex is uniquely essential for ATP synthesis in H. pylori, a homology model of the H. pylori NuoB-NuoD binding interface was generated to help rationalize the SAR and guide further development of the series. From these studies, lead compounds emerged with increased potency against H. pylori, improved safety indices, and a good overall pharmacokinetic profile with the exception of high protein binding and poor solubility. Although lead compounds in the series demonstrated efficacy in an ex vivo infection model, the compounds had no efficacy in a mouse model of H. pylori infection. Additional optimization of pharmacological properties of the series to increase solubility and free-drug levels at the sequestered sites of H. pylori infection would potentially result in a gain of in vivo efficacy. The thienopyrimidine series developed in this study demonstrates that NuoB-NuoD of the respiratory complex I can be targeted for development of novel narrow spectrum agents against H. pylori and that thienopyrimines can serve as the basis for future advancement of these studies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Antibacterianos/farmacologia , Complexo I de Transporte de Elétrons , Infecções por Helicobacter/tratamento farmacológico , Camundongos , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA