Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 12167-12173, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626381

RESUMO

Harnessing the acidity of HF/base reagents is of paramount importance to improve the efficiency and selectivity of fluorination reactions. Yet, no general method has been reported to evaluate their acidic properties, and experimental designs are still relying on a trial-and-error approach. We report a new method based on 19F NMR spectroscopy which allows highly sensitive measures and short-time analyses. Advantageously, the basic properties of the indicators can be determined upstream by DFT calculations, affording a simple yet robust semiempirical approach. In particular, the indicators used in this study were rationally designed to fit on the conceptually appealing and commonly used Hammett scale. This method has been applied to commercially available and recently developed HF/base reagents.

2.
Angew Chem Int Ed Engl ; 63(1): e202316458, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984060

RESUMO

Here we report a method to reorganize the core structure of aliphatic unsaturated nitrogen-containing substrates exploiting polyprotonation in superacid solutions. The superelectrophilic activation of N-isopropyl systems allows for the selective formal Csp3 -H activation/cyclization or homologation / functionalization of nitrogen-containing substrates. This study also reveals that this skeletal reorganization can be controlled through protonation interplay. The mechanism of this process involves an original sequence of C-N bond cleavage, isopropyl cation generation and subsequent C-N bond and C-C bond formation. This was demonstrated through in situ NMR analysis and labelling experiments, also confirmed by DFT calculations.

3.
Chemistry ; 28(6): e202103926, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34845770

RESUMO

Under superacid conditions, aromatic amines are directly and regioselectively 1,1-difluoroethylated. Low temperature in situ NMR studies confirmed the presence of benzylic α-fluoronium and α-chloronium ions as key intermediates in the reaction. This method has a wide substrate scope and can be applied to the late-stage functionalization of natural alkaloids and active pharmaceutical ingredients.


Assuntos
Aminas
4.
Nat Commun ; 15(1): 7435, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198397

RESUMO

Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution. Yet, the historical Friedel-Crafts methylation remains to date poorly selective and limited to activated simple aromatics. Here, we report the development of a selective electrophilic methylation enabling the direct access to highly desirable 1,3-disubstituted arenes. This study demonstrates that this reaction is driven by the generation of long-lived arenium intermediates generated by protonation in superacid and can be applied to a large variety of functionalized (hetero)aromatics going from standard building blocks to active pharmaceutical ingredients.

5.
Org Lett ; 22(13): 4944-4948, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32573238

RESUMO

Through superacid activation, N-(arenesulfonyl)-aminoalcohols derived from readily available ephedrines or amino acids undergo an intramolecular Friedel-Crafts reaction to afford enantiopure benzosultams bearing two adjacent stereocenters in high yields with fully controlled diastereoselectivity. Low-temperature NMR spectroscopy demonstrated the crucial role played by the conformationally restricted chiral dicationic intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA