Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteomics ; 291: 105037, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38288553

RESUMO

Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa -/- mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa -/- mice. We found that muscle of Gaa -/- mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. SIGNIFICANCE: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Animais , Camundongos , Terapia Genética/métodos , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Lentivirus/genética , Lentivirus/metabolismo , Lisossomos/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica
2.
Hum Gene Ther ; 35(7-8): 256-268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085235

RESUMO

Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Camundongos , Mucopolissacaridose II/genética , Ácido Idurônico/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Distribuição Tecidual , Iduronato Sulfatase/genética , Terapia Genética/métodos , Cartilagem/metabolismo , Cartilagem/patologia
3.
Mol Ther Methods Clin Dev ; 31: 101149, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033460

RESUMO

Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.

4.
Mol Ther Methods Clin Dev ; 27: 109-130, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36284764

RESUMO

Pompe disease is caused by deficiency of acid α-glucosidase (GAA), resulting in glycogen accumulation in various tissues, including cardiac and skeletal muscles and the central nervous system (CNS). Enzyme replacement therapy (ERT) improves cardiac, motor, and respiratory functions but is limited by poor cellular uptake and its inability to cross the blood-brain barrier. Previously, we showed that hematopoietic stem cell (HSPC)-mediated lentiviral gene therapy (LVGT) with codon-optimized GAA (LV-GAAco) caused glycogen reduction in heart, skeletal muscles, and partially in the brain at high vector copy number (VCN). Here, we fused insulin-like growth factor 2 (IGF2) to a codon-optimized version of GAA (LV-IGF2.GAAco) to improve cellular uptake by the cation-independent mannose 6-phosphate/IGF2 (CI-M6P/IGF2) receptor. In contrast to LV-GAAco, LV-IGF2.GAAco was able to completely normalize glycogen levels, pathology, and impaired autophagy at a clinically relevant VCN of 3 in heart and skeletal muscles. LV-IGF2.GAAco was particularly effective in treating the CNS, as normalization of glycogen levels and neuroinflammation was achieved at a VCN between 0.5 and 3, doses at which LV-GAAco was largely ineffective. These results identify IGF2.GAA as a candidate transgene for future clinical development of HSPC-LVGT for Pompe disease.

5.
Mol Ther Methods Clin Dev ; 25: 520-532, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662813

RESUMO

Enzyme replacement therapy (ERT) is the current standard treatment for Pompe disease, a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). ERT has shown to be lifesaving in patients with classic infantile Pompe disease. However, a major drawback is the development of neutralizing antibodies against ERT. Hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) provides a novel, potential lifelong therapy with a single intervention and may induce immune tolerance. Here, we investigated whether ERT can be safely applied as additional or alternative therapy following HSPC-LVGT in a murine model of Pompe disease. We found that lentiviral expression at subtherapeutic dose was sufficient to induce tolerance to the transgene product, as well as to subsequently administered ERT. Immune tolerance was established within 4-6 weeks after gene therapy. The mice tolerated ERT doses up to 100 mg/kg, allowing ERT to eliminate glycogen accumulation in cardiac and skeletal muscle and normalizing locomotor function. The presence of HSPC-derived cells expressing GAA in the thymus suggested the establishment of central immune tolerance. These findings demonstrate that lentiviral gene therapy in murine Pompe disease induced robust and long-term immune tolerance to GAA either expressed by a transgene or supplied as ERT.

6.
Acta Neuropathol Commun ; 7(1): 206, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829283

RESUMO

Multiple Sclerosis (MS) is the most common cause of acquired neurological disability in young adults, pathologically characterized by leukocyte infiltration of the central nervous system, demyelination of the white and grey matter, and subsequent axonal loss. Microglia are proposed to play a role in MS lesion formation, however previous literature has not been able to distinguish infiltrated macrophages from microglia. Therefore, in this study we utilize the microglia-specific, homeostatic markers TMEM119 and P2RY12 to characterize their immunoreactivity in MS grey matter lesions in comparison to white matter lesions. Furthermore, we assessed the immunological status of the white and grey matter lesions, as well as the responsivity of human white and grey matter derived microglia to inflammatory mediators. We are the first to show that white and grey matter lesions in post-mortem human material differ in their immunoreactivity for the homeostatic microglia-specific markers TMEM119 and P2RY12. In particular, whereas immunoreactivity for TMEM119 and P2RY12 is decreased in the center of WMLs, immunoreactivity for both markers is not altered in GMLs. Based on data from post-mortem human microglia cultures, treated with IL-4 or IFNγ+LPS and on  counts of CD3+ or CD20+ lymphocytes in lesions, we show that downregulation of TMEM119 and P2RY12  immunoreactivity in MS lesions corresponds with the presence of lymphocytes and lymphocyte-derived cytokines within the parenchyma but not in  the meninges. Furthermore, the presence of TMEM119+ and partly P2RY12+ microglia in pre-active lesions as well as in  the rim of active white and grey matter lesions, in addition to TMEM119+ and P2RY12+ rod-like microglia in subpial grey matter lesions suggest that blocking the entrance of lymphocytes into the CNS of MS patients may not interfere with all possible effects of TMEM119+ and P2RY12+ microglia in both white and grey matter MS lesions.


Assuntos
Substância Cinzenta/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Substância Branca/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Substância Cinzenta/química , Substância Cinzenta/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Proteínas de Membrana/análise , Microglia/química , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Receptores Purinérgicos P2Y12/análise , Substância Branca/química , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA