Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Subcell Biochem ; 104: 207-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963489

RESUMO

The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.


Assuntos
Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/fisiologia , Microscopia Crioeletrônica/métodos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/fisiologia , Relação Estrutura-Atividade , Regulação Alostérica
2.
J Cell Physiol ; 237(9): 3614-3626, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35762104

RESUMO

The human transient receptor potential canonical 5 (TRPC5) is a calcium-permeable, nonselective cation channel expressed in the central and peripheral nervous system and also in other tissues such as the kidney, synovium, and odontoblasts. TRPC5 has been recently confirmed to play a key role in spontaneous, inflammatory mechanical, and cold pain. Although TRPC5 activation is known to be cold sensitive, it is unclear whether this property is intrinsic to the channel protein and whether or to what extent it may be determined by the cellular environment. In this study, we explored the cold sensitivity of human TRPC5 at the single-channel level using transiently transfected HEK293T cells. Upon decreasing the temperature, the channel demonstrated prolonged mean open dwell times and a robust increase in the open probability (Po ), whereas the amplitude of unitary currents decreased ~1.5-fold per 10°C of temperature difference. In the absence of any agonists, the temperature dependence of Po was sigmoidal, with a steep slope within the temperature range of 16°C-11°C, and exhibited saturation below 8-5°C. Thermodynamic analysis revealed significant changes in enthalpy and entropy, suggesting that substantial conformational changes accompany cold-induced gating. The mutant channel T970A, in which the regulation downstream of G-protein coupled receptor signaling was abrogated, exhibited higher basal activity at room temperature and a less steep temperature response profile, with an apparent threshold below 22°C. An even more pronounced decrease in the activation threshold was observed in a mutant that disrupted the electrostatic interaction of TRPC5 with the endoplasmic reticulum calcium sensor stromal interaction molecule 1. Thus, TRPC5 exhibits features of an intrinsically cold-gated channel; its sensitivity to cold tightly depends on the phosphorylation status of the protein and intracellular calcium homeostasis.


Assuntos
Cálcio , Canais de Cátion TRPC , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121177

RESUMO

The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is an integrative molecular sensor for detecting environmental irritant compounds, endogenous proalgesic and inflammatory agents, pressure, and temperature. Different post-translational modifications participate in the discrimination of the essential functions of TRPA1 in its physiological environment, but the underlying structural bases are poorly understood. Here, we explored the role of the cytosolic N-terminal residue Ser602 located near a functionally important allosteric coupling domain as a potential target of phosphorylation. The phosphomimetic mutation S602D completely abrogated channel activation, whereas the phosphonull mutations S602G and S602N produced a fully functional channel. Using mutagenesis, electrophysiology, and molecular simulations, we investigated the possible structural impact of a modification (mutation or phosphorylation) of Ser602 and found that this residue represents an important regulatory site through which the intracellular signaling cascades may act to reversibly restrict or "dampen" the conformational space of the TRPA1 channel and promote its transitions to the closed state.


Assuntos
Mutação , Serina/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Domínios Proteicos , Canal de Cátion TRPA1/genética
4.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426314

RESUMO

The vanilloid transient receptor potential channel TRPV3 is a putative molecular thermosensor widely considered to be involved in cutaneous sensation, skin homeostasis, nociception, and pruritus. Repeated stimulation of TRPV3 by high temperatures above 50 °C progressively increases its responses and shifts the activation threshold to physiological temperatures. This use-dependence does not occur in the related heat-sensitive TRPV1 channel in which responses decrease, and the activation threshold is retained above 40 °C during activations. By combining structure-based mutagenesis, electrophysiology, and molecular modeling, we showed that chimeric replacement of the residues from the TRPV3 cytoplasmic inter-subunit interface (N251-E257) with the homologous residues of TRPV1 resulted in channels that, similarly to TRPV1, exhibited a lowered thermal threshold, were sensitized, and failed to close completely after intense stimulation. Crosslinking of this interface by the engineered disulfide bridge between substituted cysteines F259C and V385C (or, to a lesser extent, Y382C) locked the channel in an open state. On the other hand, mutation of a single residue within this region (E736) resulted in heat resistant channels. We propose that alterations in the cytoplasmic inter-subunit interface produce shifts in the channel gating equilibrium and that this domain is critical for the use-dependence of the heat sensitivity of TRPV3.


Assuntos
Citoplasma/metabolismo , Canais de Cátion TRPV/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
5.
J Cell Mol Med ; 22(2): 1355-1362, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210178

RESUMO

Exposure to repetitive low-frequency electromagnetic field (LF-EMF) shows promise as a non-invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage-gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF-EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high-induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short-term (<180 sec.) exposure of F11 cells to LF-EMF reduces calcium transients in response to bradykinin, a potent pain-producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF-EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron-derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.


Assuntos
Campos Eletromagnéticos , Células Receptoras Sensoriais/metabolismo , Bradicinina/farmacologia , Cálcio/metabolismo , Linhagem Celular , Humanos , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo
6.
J Biol Chem ; 292(51): 21083-21091, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29084846

RESUMO

The transient receptor potential vanilloid 3 (TRPV3) channel is a Ca2+-permeable thermosensitive ion channel widely expressed in keratinocytes, where together with epidermal growth factor receptor (EGFR) forms a signaling complex regulating epidermal homeostasis. Proper signaling through this complex is achieved and maintained via several pathways in which TRPV3 activation is absolutely required. Results of recent studies have suggested that low-level constitutive activity of TRPV3 induces EGFR-dependent signaling that, in turn, amplifies TRPV3 via activation of the mitogen-activated protein kinase ERK in a positive feedback loop. Here, we explored the molecular mechanism that increases TRPV3 activity through EGFR activation. We used mutagenesis and whole-cell patch clamp experiments on TRPV3 channels endogenously expressed in an immortalized human keratinocyte cell line (HaCaT) and in transiently transfected HEK293T cells and found that the sensitizing effect of EGFR on TRPV3 is mediated by ERK. We observed that ERK-mediated phosphorylation of TRPV3 alters its responsiveness to repeated chemical stimuli. Among several putative ERK phosphorylation sites, we identified threonine 264 in the N-terminal ankyrin repeat domain as the most critical site for the ERK-dependent modulation of TRPV3 channel activity. Of note, Thr264 is in close vicinity to a structurally and functionally important TRPV3 region comprising an atypical finger 3 and oxygen-dependent hydroxylation site. In summary, our findings indicate that Thr264 in TRPV3 is a key ERK phosphorylation site mediating EGFR-induced sensitization of the channel to stimulate signaling pathways involved in regulating skin homeostasis.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima , Compostos de Boro/farmacologia , Linhagem Celular Transformada , Cimenos , Receptores ErbB/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Monoterpenos/farmacologia , Mutagênese Sítio-Dirigida , Mutação , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Treonina/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1848(5): 1147-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687973

RESUMO

The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Anisotropia , Soluções Tampão , Canais de Cálcio/química , Membrana Celular/química , Humanos , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Transição de Fase , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química
8.
EMBO J ; 31(19): 3795-808, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22850668

RESUMO

Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.


Assuntos
Ciguatoxinas/toxicidade , Dor/induzido quimicamente , Animais , Temperatura Baixa , Hiperalgesia/induzido quimicamente , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética
9.
J Neurosci ; 33(42): 16627-41, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133266

RESUMO

Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.


Assuntos
Nociceptores/fisiologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/metabolismo , Termorreceptores/fisiologia , Sensação Térmica/fisiologia , Animais , Cânfora/farmacologia , Temperatura Baixa , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Mentol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/metabolismo , Nociceptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/genética , Termorreceptores/metabolismo , Sensação Térmica/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1833(3): 520-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23220012

RESUMO

The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating.


Assuntos
Mutação/genética , Estrutura Secundária de Proteína , Prótons , Canais de Cátion TRPV/química , Células Cultivadas , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Rim/citologia , Rim/metabolismo , Técnicas de Patch-Clamp , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
J Biol Chem ; 287(22): 18067-77, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22461626

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel is a Ca(2+)-permeable cation channel whose activation results from a complex synergy between distinct activation sites, one of which is especially important for determining its sensitivity to chemical, voltage and cold stimuli. From the cytoplasmic side, TRPA1 is critically regulated by Ca(2+) ions, and this mechanism represents a self-modulating feedback loop that first augments and then inhibits the initial activation. We investigated the contribution of the cluster of acidic residues in the distal C terminus of TRPA1 in these processes using mutagenesis, whole cell electrophysiology, and molecular dynamics simulations and found that the neutralization of four conserved residues, namely Glu(1077) and Asp(1080)-Asp(1082) in human TRPA1, had strong effects on the Ca(2+)- and voltage-dependent potentiation and/or inactivation of agonist-induced responses. The surprising finding was that truncation of the C terminus by only 20 residues selectively slowed down the Ca(2+)-dependent inactivation 2.9-fold without affecting other functional parameters. Our findings identify the conserved acidic motif in the C terminus that is actively involved in TRPA1 regulation by Ca(2+).


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Linhagem Celular , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Homologia de Sequência de Aminoácidos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
12.
Anesthesiology ; 116(4): 903-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22314297

RESUMO

BACKGROUND: The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. METHODS: The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. RESULTS: The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. CONCLUSIONS: The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.


Assuntos
Cânfora/farmacologia , Canais de Cátion TRPV/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cânfora/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Poro Nuclear/efeitos dos fármacos , Poro Nuclear/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
13.
Biochem J ; 433(1): 197-204, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20946100

RESUMO

The ankyrin transient receptor potential channel TRPA1 is a non-selective cationic channel that is expressed by sensory neurons, where it can be activated by pungent chemicals, such as AITC (allyl isothiocyanate), cinnamon or allicin, by deep cooling (<18 °C) or highly depolarizing voltages (>+100 mV). From the cytoplasmic side, this channel can be regulated by negatively charged ligands such as phosphoinositides or inorganic polyphosphates, most likely through an interaction with as yet unidentified positively charged domain(s). In the present study, we mutated 27 basic residues along the C-terminal tail of TRPA1, trying to explore their role in AITC- and voltage-dependent gating. In the proximal part of the C-terminus, the function-affecting mutations were at Lys969, Arg975, Lys988 and Lys989. A second significant region was found in the predicted helix, centred around Lys1048 and Lys1052, in which single alanine mutations completely abolished AITC- and voltage-dependent activation. In the distal portion of the C-terminus, the charge neutralizations K1092A and R1099A reduced the AITC sensitivity, and, in the latter mutant, increased the voltage-induced steady-state responses. Taken together, our findings identify basic residues in the C-terminus that are strongly involved in TRPA1 voltage and chemical sensitivity, and some of them may represent possible interaction sites for negatively charged molecules that are generally considered to modulate TRPA1.


Assuntos
Aminoácidos Básicos/fisiologia , Canais de Cálcio/metabolismo , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Substituição de Aminoácidos , Aminoácidos Básicos/genética , Repetição de Anquirina , Anquirinas , Canais de Cálcio/química , Humanos , Íons/farmacologia , Proteínas do Tecido Nervoso/química , Células Receptoras Sensoriais/química , Eletricidade Estática , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química
14.
Biomed Pharmacother ; 152: 113262, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691156

RESUMO

Transient receptor potential canonical 5 (TRPC5) is a polymodal, calcium-permeable, nonselective ion channel that is expressed in the brain and 75 % of human sensory neurons. Its pharmacological or genetic inhibition leads to the relief of neuropathic and inflammatory pain. The clinically approved drug duloxetine is superior to other serotonin and norepinephrine reuptake inhibitors at managing painful neuropathies, but it is not known why. Here we ask whether the TRPC5 receptor is modulated by duloxetine and may contribute to its analgesic effect. Electrophysiological measurements of heterologously expressed human TRPC5 in HEK293T cells were performed to evaluate the effect of duloxetine. The interaction site was identified by molecular docking and molecular dynamics simulations in combination with point mutagenesis. We found that duloxetine inhibits TRPC5 in a concentration-dependent manner with a high potency (IC50 = 0.54 ± 0.03 µM). Our data suggest that duloxetine binds into a voltage sensor-like domain. For the interaction, Glu418 exhibited particular importance due to putative hydrogen bond formation. Duloxetine effectively inhibits TRPC5 currents induced by cooling, voltage, direct agonists and by the stimulation of the PLC pathway. The finding that this TRPC5 inhibitor is widely used and well tolerated provides a scaffold for new pain treatment strategies.


Assuntos
Dor , Canais de Cátion TRPC , Cloridrato de Duloxetina/farmacologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
15.
Nat Commun ; 13(1): 6113, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253390

RESUMO

TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.


Assuntos
Repetição de Anquirina , Temperatura Alta , Alanina , Humanos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Sensação Térmica , Triptofano
16.
Nat Commun ; 13(1): 7483, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470868

RESUMO

TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.


Assuntos
Canabidiol , Canabinoides , Ratos , Humanos , Animais , Canabidiol/farmacologia , Canais de Cátion TRPV/metabolismo , Canabinoides/farmacologia , Probenecid/farmacologia , Ligantes , Microscopia Crioeletrônica
17.
J Biol Chem ; 285(53): 41455-62, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21044960

RESUMO

The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.


Assuntos
Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Eletrofisiologia/métodos , Temperatura Alta , Humanos , Canais Iônicos/química , Proteínas de Membrana/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
18.
Nat Struct Mol Biol ; 28(7): 564-572, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239124

RESUMO

Numerous physiological functions rely on distinguishing temperature through temperature-sensitive transient receptor potential channels (thermo-TRPs). Although the function of thermo-TRPs has been studied extensively, structural determination of their heat- and cold-activated states has remained a challenge. Here, we present cryo-EM structures of the nanodisc-reconstituted wild-type mouse TRPV3 in three distinct conformations: closed, heat-activated sensitized and open states. The heat-induced transformations of TRPV3 are accompanied by changes in the secondary structure of the S2-S3 linker and the N and C termini and represent a conformational wave that links these parts of the protein to a lipid occupying the vanilloid binding site. State-dependent differences in the behavior of bound lipids suggest their active role in thermo-TRP temperature-dependent gating. Our structural data, supported by physiological recordings and molecular dynamics simulations, provide an insight for understanding the molecular mechanism of temperature sensing.


Assuntos
Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Animais , Linhagem Celular , Temperatura Baixa , Microscopia Crioeletrônica , Células HEK293 , Temperatura Alta , Humanos , Ativação do Canal Iônico , Lipídeos/química , Camundongos , Ligação Proteica/fisiologia , Conformação Proteica , Termodinâmica
19.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771873

RESUMO

Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.

20.
Biochim Biophys Acta ; 1793(7): 1279-88, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19422860

RESUMO

The ankyrin transient receptor potential channel TRPA1 is a sensory neuron-specific channel that is gated by various proalgesic agents such as allyl isothiocyanate (AITC), deep cooling or highly depolarizing voltages. How these disparate stimuli converge on the channel protein to open/close its ion-conducting pore is unknown. We identify several residues within the S6 inner pore-forming region of human TRPA1 that contribute to AITC and voltage-dependent gating. Alanine substitution in the conserved mid-S6 proline (P949A) strongly affected the activation/deactivation and ion permeation. The P949A was functionally restored by substitution with a glycine but not by the introduction of a proline at positions -1, -2 or +1, which indicates that P949 is structurally required for the normal functioning of the TRPA1 channel. Mutation N954A generated a constitutively open phenotype, suggesting a role in stabilizing the closed conformation. Alanine substitutions in the distal GXXXG motif decreased the relative permeability of the channel for Ca(2+) and strongly affected its activation/deactivation properties, indicating that the distal G962 stabilizes the open conformation. G958, on the other hand, provides additional tuning leading to decreased channel activity. Together these findings provide functional support for the critical role of the putative inner pore region in controlling the conformational changes that determine the transitions between the open and close states of the TRPA1 channel.


Assuntos
Canais de Cálcio/metabolismo , Eletrofisiologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Substituição de Aminoácidos , Cálcio/metabolismo , Conservantes de Alimentos/farmacologia , Humanos , Isotiocianatos/farmacologia , Modelos Moleculares , Mutação/genética , Canal de Cátion TRPA1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA