Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 162(1): 170-83, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26095250

RESUMO

Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems.


Assuntos
Imunidade Inata , Lipídeos/imunologia , Animais , Membrana Celular/química , Fibroblastos/metabolismo , Doença de Gaucher/imunologia , Humanos , Interleucina-6/imunologia , Leucodistrofia de Células Globoides/imunologia , Redes e Vias Metabólicas , Camundongos , Esfingolipídeos/metabolismo , Receptores Toll-Like/imunologia
2.
Nat Chem Biol ; 15(3): 232-240, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692684

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has substantially improved therapeutic options for chronic lymphocytic leukemia (CLL). Although ibrutinib is not curative, it has a profound effect on CLL cells and may create new pharmacologically exploitable vulnerabilities. To identify such vulnerabilities, we developed a systematic approach that combines epigenome profiling (charting the gene-regulatory basis of cell state) with single-cell chemosensitivity profiling (quantifying cell-type-specific drug response) and bioinformatic data integration. By applying our method to a cohort of matched patient samples collected before and during ibrutinib therapy, we identified characteristic ibrutinib-induced changes that provide a starting point for the rational design of ibrutinib combination therapies. Specifically, we observed and validated preferential sensitivity to proteasome, PLK1, and mTOR inhibitors during ibrutinib treatment. More generally, our study establishes a broadly applicable method for investigating treatment-specific vulnerabilities by integrating the complementary perspectives of epigenetic cell states and phenotypic drug responses in primary patient samples.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Cromatina/fisiologia , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Epigenômica/métodos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Piperidinas , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Análise de Célula Única/métodos , Serina-Treonina Quinases TOR/metabolismo , Quinase 1 Polo-Like
3.
Immunity ; 37(1): 96-107, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22840842

RESUMO

Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1ß, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1ß production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.


Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peste/imunologia , Peste/metabolismo , Yersinia pestis/imunologia , Animais , Inflamassomos/imunologia , Interferon gama/biossíntese , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peste/mortalidade , Transdução de Sinais
4.
Lab Invest ; 99(5): 648-658, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30679758

RESUMO

Fibroblast-like synoviocytes (FLS) are major contributors to joint inflammation in rheumatoid arthritis (RA). Forkhead box O 3 (FOXO3) perturbations in immune cells are increasingly linked to RA pathogenesis. Here, we show that FOXO3 is distinctly inactivated/phosphorylated in the FLS of rheumatoid synovitis. In vitro, stimulation of FLS with tumor necrosis factor-alpha α (TNFα) induced a rapid and sustained inactivation of FOXO3. mRNA profiling revealed that the inactivation of FOXO3 is important for the sustained pro-inflammatory interferon response to TNFα (CXCL9, CXCL10, CXCL11, and TNFSF18). Mechanistically, our studies demonstrate that the inactivation of FOXO3 results from TNF-induced downregulation of phosphoinositide-3-kinase-interacting protein 1 (PIK3IP1). Thus, we identified FOXO3 and its modulator PIK3IP1 as a critical regulatory circuit for the inflammatory response of the resident mesenchymal cells to TNFα and contribute insight into how the synovial tissue brings about chronic inflammation that is driven by TNFα.


Assuntos
Fibroblastos/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Inflamação/genética , Sinoviócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Sinoviócitos/citologia , Sinoviócitos/metabolismo
5.
Haematologica ; 104(10): 1935-1949, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31048353

RESUMO

Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk of transforming into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diag nostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to distinguish between 'normal', pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology.


Assuntos
Leucemia Mielomonocítica Crônica/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Idoso , Congressos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto
6.
Nat Chem Biol ; 13(6): 681-690, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28437395

RESUMO

Small-molecule drugs may complement antibody-based therapies in an immune-oncology setting, yet systematic methods for the identification and characterization of the immunomodulatory properties of these entities are lacking. We surveyed the immumomodulatory potential of 1,402 small chemical molecules, as defined by their ability to alter the cell-cell interactions among peripheral mononuclear leukocytes ex vivo, using automated microscopy and population-wide single-cell image analysis. Unexpectedly, ∼10% of the agents tested affected these cell-cell interactions differentially. The results accurately recapitulated known immunomodulatory drug classes and revealed several clinically approved drugs that unexpectedly harbor the ability to modulate the immune system, which could potentially contribute to their physiological mechanism of action. For instance, the kinase inhibitor crizotinib promoted T cell interactions with monocytes, as well as with cancer cells, through inhibition of the receptor tyrosine kinase MSTR1 and subsequent upregulation of the expression of major histocompatibility complex molecules. The approach offers an attractive platform for the personalized identification and characterization of immunomodulatory therapeutics.


Assuntos
Imunomodulação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Miosinas Cardíacas/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Crizotinibe , Humanos , Cadeias Pesadas de Miosina/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia
8.
Mol Cell Proteomics ; 15(3): 1139-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26933192

RESUMO

Tandem affinity purification-mass spectrometry (TAP-MS) is a popular strategy for the identification of protein-protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Proteínas Quinases/metabolismo , Proteômica/métodos , Retroviridae/genética , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Genes Reporter , Células HEK293 , Células HT29 , Humanos , Células K562 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Quinases/genética
9.
J Biol Chem ; 291(3): 1123-36, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26555265

RESUMO

Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1ß and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1ß/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1ß in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.


Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Transporte/metabolismo , Células Dendríticas/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Saponinas/farmacologia , Vacinas contra a AIDS/agonistas , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/análise , Adjuvantes Imunológicos/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Proteínas de Transporte/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteína gp120 do Envelope de HIV/agonistas , Proteína gp120 do Envelope de HIV/imunologia , Imunoglobulina G/análise , Imunoglobulina G/biossíntese , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lipídeo A/agonistas , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Saponinas/análise , Saponinas/química , Solubilidade , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(20): 7391-6, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799678

RESUMO

A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-ß (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1ß, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1ß and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection.


Assuntos
Caspase 8/metabolismo , Morte Celular , Imunidade Inata , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Proteínas de Bactérias/genética , Células da Medula Óssea/citologia , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Yersiniose/microbiologia , Yersinia pestis/genética
11.
J Biol Chem ; 290(6): 3209-22, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25505250

RESUMO

Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-ß and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Receptores de Interleucina/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Endocitose , Endossomos/metabolismo , Células HEK293 , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina/genética , Receptor 2 Toll-Like/agonistas
12.
N Engl J Med ; 369(25): 2379-90, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24325356

RESUMO

BACKGROUND: Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients. METHODS: We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms. RESULTS: Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2. CONCLUSIONS: Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F mutation. (Funded by the MPN Research Foundation and Associazione Italiana per la Ricerca sul Cancro.).


Assuntos
Calreticulina/genética , Mutação , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Doenças da Medula Óssea/genética , Éxons , Humanos , Janus Quinase 2/genética , Leucemia Mieloide/genética , Reação em Cadeia da Polimerase , Mielofibrose Primária/mortalidade , Modelos de Riscos Proporcionais , Receptores de Trombopoetina/genética , Análise de Sequência de DNA , Trombocitemia Essencial/complicações , Trombocitemia Essencial/mortalidade , Trombose/etiologia
13.
Eur J Immunol ; 45(5): 1500-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678110

RESUMO

Secretion of type I interferon (IFN) is the first cellular reaction to invading pathogens. Despite the protective function of these cytokines, an excessive response to their action can contribute to serious pathologies, such as autoimmune diseases. Transcripts of most cytokines contain adenylate-uridylate (A/U)-rich elements (AREs) that make them highly unstable. RNA-binding proteins (RBPs) are mediators of the regulatory mechanisms that determine the fate of mRNAs containing AREs. Here, we applied an affinity proteomic approach and identified lethal, abnormal vision, drosophila-like 1 (ELAVL1)/Hu antigen R (HuR) as the predominant RBP of the IFN-ß mRNA ARE. Reduced expression or chemical inhibition of HuR severely hampered the type I IFN response in various cell lines and fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. These results define a role for HuR as a potent modulator of the type I IFN response. Taken together, HuR could be used as therapeutic target for diseases where type I IFN production is exaggerated.


Assuntos
Proteínas ELAV/imunologia , Interferon Tipo I/biossíntese , Interferon beta/genética , Elementos Ricos em Adenilato e Uridilato , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Sequência de Bases , Proteínas ELAV/antagonistas & inibidores , Proteínas ELAV/genética , Proteína Semelhante a ELAV 1 , Células HeLa , Humanos , Indutores de Interferon/farmacologia , Dados de Sequência Molecular , Poli I-C/farmacologia , Multimerização Proteica , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Membrana Sinovial/imunologia
14.
Ann Rheum Dis ; 74(11): 2062-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24914072

RESUMO

OBJECTIVE: Nephrogenic systemic fibrosis (NSF) is a progressive fibrosing disorder that may develop in patients with chronic kidney disease after administration of gadolinium (Gd)-based contrast agents (GBCAs). In the setting of impaired renal clearance of GBCAs, Gd deposits in various tissues and fibrosis subsequently develops. However, the precise mechanism by which fibrosis occurs in NSF is incompletely understood. Because other profibrotic agents, such as silica or asbestos, activate the nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and initiate interleukin (IL)-1ß release with the subsequent development of fibrosis, we evaluated the effects of GBCAs on inflammasome activation. METHODS: Bone marrow derived macrophages from C57BL/6, Nlrp3(-/-) and Asc(-/-) mice were incubated with three Gd-containing compounds and IL-1ß activation and secretion was detected by ELISA and western blot analysis. Inflammasome activation and regulation was investigated in IL-4- and interferon (IFN)γ-polarised macrophages by ELISA, quantitative real time (qRT)-PCR and NanoString nCounter analysis. Furthermore, C57BL/6 and Nlrp3(-/-)mice were intraperitoneally injected with GBCA and recruitment of inflammatory cells to the peritoneum was analysed by fluorescence-activated cell sorting (FACS). RESULTS: Free Gd and GBCAs activate the NLRP3 inflammasome and induce IL-1ß secretion in vitro. Gd-diethylenetriaminepentaacetic acid also induces the recruitment of neutrophils and inflammatory monocytes to the peritoneum in vivo. Gd activated IL-4-polarised macrophages more effectively than IFNγ-polarised macrophages, which preferentially expressed genes known to downregulate inflammasome activity. CONCLUSIONS: These data suggest that Gd released from GBCAs triggers a NLRP3 inflammasome-dependent inflammatory response that leads to fibrosis in an appropriate clinical setting. The preferential activation of IL-4-differentiated macrophages is consistent with the predominantly fibrotic presentation of NSF.


Assuntos
Proteínas de Transporte/efeitos dos fármacos , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Dermopatia Fibrosante Nefrogênica/imunologia , Peritônio/efeitos dos fármacos , Peritonite/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Meios de Contraste/efeitos adversos , Modelos Animais de Doenças , Gadolínio/efeitos adversos , Gadolínio DTPA/efeitos adversos , Gadolínio DTPA/farmacologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Dermopatia Fibrosante Nefrogênica/genética , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/farmacologia , Peritônio/imunologia , Peritonite/induzido quimicamente , Peritonite/genética
15.
Blood Cancer Discov ; 3(6): 502-515, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125297

RESUMO

Drug testing in patient biopsy-derived cells can identify potent treatments for patients suffering from relapsed or refractory hematologic cancers. Here we investigate the use of weakly supervised deep learning on cell morphologies (DML) to complement diagnostic marker-based identification of malignant and nonmalignant cells in drug testing. Across 390 biopsies from 289 patients with diverse blood cancers, DML-based drug responses show improved reproducibility and clustering of drugs with the same mode of action. DML does so by adapting to batch effects and by autonomously recognizing disease-associated cell morphologies. In a post hoc analysis of 66 patients, DML-recommended treatments led to improved progression-free survival compared with marker-based recommendations and physician's choice-based treatments. Treatments recommended by both immunofluorescence and DML doubled the fraction of patients achieving exceptional clinical responses. Thus, DML-enhanced ex vivo drug screening is a promising tool in the identification of effective personalized treatments. SIGNIFICANCE: We have recently demonstrated that image-based drug screening in patient samples identifies effective treatment options for patients with advanced blood cancers. Here we show that using deep learning to identify malignant and nonmalignant cells by morphology improves such screens. The presented workflow is robust, automatable, and compatible with clinical routine. This article is highlighted in the In This Issue feature, p. 476.


Assuntos
Neoplasias Hematológicas , Medicina de Precisão , Humanos , Reprodutibilidade dos Testes
16.
ACS Pharmacol Transl Sci ; 5(11): 1156-1168, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407952

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.

17.
Cancer Discov ; 12(2): 372-387, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635570

RESUMO

Personalized medicine aims to match the right drug with the right patient by using specific features of the individual patient's tumor. However, current strategies of personalized therapy matching provide treatment opportunities for less than 10% of patients with cancer. A promising method may be drug profiling of patient biopsy specimens with single-cell resolution to directly quantify drug effects. We prospectively tested an image-based single-cell functional precision medicine (scFPM) approach to guide treatments in 143 patients with advanced aggressive hematologic cancers. Fifty-six patients (39%) were treated according to scFPM results. At a median follow-up of 23.9 months, 30 patients (54%) demonstrated a clinical benefit of more than 1.3-fold enhanced progression-free survival compared with their previous therapy. Twelve patients (40% of responders) experienced exceptional responses lasting three times longer than expected for their respective disease. We conclude that therapy matching by scFPM is clinically feasible and effective in advanced aggressive hematologic cancers. SIGNIFICANCE: This is the first precision medicine trial using a functional assay to instruct n-of-one therapies in oncology. It illustrates that for patients lacking standard therapies, high-content assay-based scFPM can have a significant value in clinical therapy guidance based on functional dependencies of each patient's cancer.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Áustria , Estudos de Coortes , Feminino , Neoplasias Hematológicas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Medicina de Precisão , Intervalo Livre de Progressão , Adulto Jovem
18.
Curr Opin Chem Biol ; 56: 72-78, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086157

RESUMO

Anticancer drug discovery and development using conventional cell line and animal models has traditionally had a low overall success rate. Despite yielding game-changing new therapeutics, 10-20 new molecules have to be brought to the clinic to obtain one new approval, making this approach costly and inefficient. The use of in vitro experimental models based on primary human tumour tissues has the potential to provide a representation of human cancer biology that is closer to an actual patient and to 'bridge the translational gap' between preclinical and clinical research. Here, we review recent advances in the use of human tumour samples for preclinical research through organoid development or as primary patient materials. While challenges still remain regarding analysis, validation and scalability, evidence is mounting for the applicability of both models as preclinical research tools.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Aprendizado de Máquina , Modelos Biológicos , Imagem Óptica , Organoides/metabolismo , Análise de Célula Única
19.
Science ; 362(6419): 1171-1177, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30442766

RESUMO

In genetic screens aimed at understanding drug resistance mechanisms in chronic myeloid leukemia cells, inactivation of the cullin 3 adapter protein-encoding leucine zipper-like transcription regulator 1 (LZTR1) gene led to enhanced mitogen-activated protein kinase (MAPK) pathway activity and reduced sensitivity to tyrosine kinase inhibitors. Knockdown of the Drosophila LZTR1 ortholog CG3711 resulted in a Ras-dependent gain-of-function phenotype. Endogenous human LZTR1 associates with the main RAS isoforms. Inactivation of LZTR1 led to decreased ubiquitination and enhanced plasma membrane localization of endogenous KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog). We propose that LZTR1 acts as a conserved regulator of RAS ubiquitination and MAPK pathway activation. Because LZTR1 disease mutations failed to revert loss-of-function phenotypes, our findings provide a molecular rationale for LZTR1 involvement in a variety of inherited and acquired human disorders.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/fisiologia , Ubiquitinação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Drosophila melanogaster , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mutação com Ganho de Função , Técnicas de Silenciamento de Genes , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitinação/genética
20.
Lancet Haematol ; 4(12): e595-e606, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29153976

RESUMO

BACKGROUND: Patients with refractory or relapsed haematological malignancies have few treatment options and short survival times. Identification of effective therapies with genomic-based precision medicine is hampered by intratumour heterogeneity and incomplete understanding of the contribution of various mutations within specific cancer phenotypes. Ex-vivo drug-response profiling in patient biopsies might aid effective treatment identification; however, proof of its clinical utility is limited. METHODS: We investigated the feasibility and clinical impact of multiparametric, single-cell, drug-response profiling in patient biopsies by immunofluorescence, automated microscopy, and image analysis, an approach we call pharmacoscopy. First, the ability of pharmacoscopy to separate responders from non-responders was evaluated retrospectively for a cohort of 20 newly diagnosed and previously untreated patients with acute myeloid leukaemia. Next, 48 patients with aggressive haematological malignancies were prospectively evaluated for pharmacoscopy-guided treatment, of whom 17 could receive the treatment. The primary endpoint was progression-free survival in pharmacoscopy-treated patients, as compared with their own progression-free survival for the most recent regimen on which they had progressive disease. This trial is ongoing and registered with ClinicalTrials.gov, number NCT03096821. FINDINGS: Pharmacoscopy retrospectively predicted the clinical response of 20 acute myeloid leukaemia patients to initial therapy with 88·1% accuracy. In this interim analysis, 15 (88%) of 17 patients receiving pharmacoscopy-guided treatment had an overall response compared with four (24%) of 17 patients with their most recent regimen (odds ratio 24·38 [95% CI 3·99-125·4], p=0·0013). 12 (71%) of 17 patients had a progression-free survival ratio of 1·3 or higher, and median progression-free survival increased by four times, from 5·7 (95% CI 4·1-12·1) weeks to 22·6 (7·4-34·0) weeks (hazard ratio 3·14 [95% CI 1·37-7·22], p=0·0075). INTERPRETATION: Routine clinical integration of pharmacoscopy for treatment selection is technically feasible, and led to improved treatment of patients with aggressive refractory haematological malignancies in an initial patient cohort, warranting further investigation. FUNDING: Austrian Academy of Sciences; European Research Council; Austrian Science Fund; Austrian Federal Ministry of Science, Research and Economy; National Foundation for Research, Technology and Development; Anniversary Fund of the Austrian National Bank; MPN Research Foundation; European Molecular Biology Organization; and Swiss National Science Foundation.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Adenina/análogos & derivados , Adulto , Idoso , Área Sob a Curva , Medula Óssea/patologia , Bortezomib/uso terapêutico , Cladribina/uso terapêutico , Intervalo Livre de Doença , Feminino , Neoplasias Hematológicas/diagnóstico por imagem , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/patologia , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Razão de Chances , Projetos Piloto , Piperidinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Curva ROC , Indução de Remissão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA