Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 159(7): 1626-39, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525880

RESUMO

Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.


Assuntos
Fusos Musculares/fisiologia , Animais , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Retroalimentação Fisiológica , Locomoção , Camundongos , Neurônios/fisiologia , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal
2.
Biomaterials ; 123: 63-76, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167393

RESUMO

Tissue loss significantly reduces the potential for functional recovery after spinal cord injury. We previously showed that implantation of porous scaffolds composed of a biodegradable and biocompatible block copolymer of Poly-lactic-co-glycolic acid and Poly-l-lysine improves functional recovery and reduces spinal cord tissue injury after spinal cord hemisection injury in rats. Here, we evaluated the safety and efficacy of porous scaffolds in non-human Old-World primates (Chlorocebus sabaeus) after a partial and complete lateral hemisection of the thoracic spinal cord. Detailed analyses of kinematics and muscle activity revealed that by twelve weeks after injury fully hemisected monkeys implanted with scaffolds exhibited significantly improved recovery of locomotion compared to non-implanted control animals. Twelve weeks after injury, histological analysis demonstrated that the spinal cords of monkeys with a hemisection injury implanted with scaffolds underwent appositional healing characterized by a significant increase in remodeled tissue in the region of the hemisection compared to non-implanted controls. The number of glial fibrillary acidic protein immunopositive astrocytes was diminished within the inner regions of the remodeled tissue layer in treated animals. Activated macrophage and microglia were present diffusely throughout the remodeled tissue and concentrated at the interface between the preserved spinal cord tissue and the remodeled tissue layer. Numerous unphosphorylated neurofilament H and neuronal growth associated protein positive fibers and myelin basic protein positive cells may indicate neural sprouting inside the remodeled tissue layer of treated monkeys. These results support the safety and efficacy of polymer scaffolds in a primate model of acute spinal cord injury. A device substantially similar to the device described here is the subject of an ongoing human clinical trial.


Assuntos
Implantes Absorvíveis , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/fisiologia , Alicerces Teciduais , Animais , Chlorocebus aethiops , Desenho de Equipamento , Análise de Falha de Equipamento , Transtornos Neurológicos da Marcha/patologia , Regeneração Tecidual Guiada/instrumentação , Humanos , Masculino , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia
3.
Acta Neuropathol Commun ; 3: 46, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26205255

RESUMO

INTRODUCTION: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease. Ageing is the most compelling and major risk factor for developing PD but its impact on α-syn toxicity remains however unexplored. In this study, we developed and exploited a recombinant adeno-associated viral (AAV) vector of serotype 9 overexpressing mutated α-syn to elucidate the influence of ageing on the dynamics of PD-related neurodegeneration associated with α-syn pathology in different mammalian species. RESULTS: Identical AAV pseudotype 2/9 vectors carrying the DNA for human mutant p.A53T α-syn were injected into the substantia nigra to induce neurodegeneration and synucleinopathy in mice, rats and monkeys. Rats were used first to validate the ability of this serotype to replicate α-syn pathology and second to investigate the relationship between the kinetics of α-syn-induced nigrostriatal degeneration and the progressive onset of motor dysfunctions, strikingly reminiscent of the impairments observed in PD patients. In mice, AAV2/9-hα-syn injection into the substantia nigra was associated with accumulation of α-syn and phosphorylated hα-syn, regardless of mouse strain. However, phenotypic mutants with either accelerated senescence or resistance to senescence did not display differential susceptibility to hα-syn overexpression. Of note, p-α-syn levels correlated with nigrostriatal degeneration in mice. In monkeys, hα-syn-induced degeneration of the nigrostriatal pathway was not affected by the age of the animals. Unlike mice, monkeys did not exhibit correlations between levels of phosphorylated α-syn and neurodegeneration. CONCLUSIONS: In conclusion, AAV2/9-mediated hα-syn induces robust nigrostriatal neurodegeneration in mice, rats and monkeys, allowing translational comparisons among species. Ageing, however, neither exacerbated nigrostriatal neurodegeneration nor α-syn pathology per se. Our unprecedented multi-species investigation thus favours the multiple-hit hypothesis for PD wherein ageing would merely be an aggravating, additive, factor superimposed upon an independent disease process.


Assuntos
Envelhecimento , Intoxicação por MPTP/patologia , Degeneração Estriatonigral/patologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Fenômenos Biomecânicos , Callithrix , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Intoxicação por MPTP/induzido quimicamente , Camundongos , Atividade Motora , Análise de Componente Principal , Desempenho Psicomotor/fisiologia , Ratos , Degeneração Estriatonigral/etiologia , Fatores de Tempo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Science ; 336(6085): 1182-5, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654062

RESUMO

Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.


Assuntos
Membro Posterior/fisiologia , Locomoção , Córtex Motor/fisiologia , Paralisia/reabilitação , Tratos Piramidais/fisiologia , Robótica , Traumatismos da Medula Espinal/reabilitação , Animais , Axônios/fisiologia , Tronco Encefálico/fisiologia , Agonistas de Dopamina/administração & dosagem , Estimulação Elétrica , Feminino , Marcha , Fibras Nervosas/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Paralisia/fisiopatologia , Tratos Piramidais/citologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Agonistas do Receptor de Serotonina/administração & dosagem , Medula Espinal/citologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
5.
Behav Brain Res ; 217(1): 77-80, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20965216

RESUMO

Growing evidence suggests that altered function of the GABAergic system can contribute to the pathophysiology of depression. Many GABAergic effects are mediated via ionotropic GABA(A) receptors, which are functionally defined by their α subunit (α1-α6). Although it remains unknown which specific GABA(A) receptor population mediates depressive-like effects, we posit that α2-containing GABA(A) receptors, which are highly expressed in limbic regions, may underlie these behaviors. We hypothesized that genetic inactivation of α2-containing GABA(A) receptors would generate a depressive-like phenotype in mice. Male and female wild type, α2 heterozygous, and α2 homozygous knockout mice generated on the 129X1/SvJ background were examined in the novelty-suppressed feeding (NSF) test, the forced swim test (FST) and the tail suspension test (TST). Male α2 knockout mice took longer to eat in the NSF test and became immobile faster and remained immobile longer when challenged in the FST and the TST compared to wild types. In females significant genotypic differences were only observed in the FST. We conclude that GABAergic inhibition acting via α2-containing GABA(A) receptors has an antidepressant-like effect in vivo and that these receptors represent a specific molecular substrate that can regulate depressive-like states. α2-containing GABA(A) receptors may therefore represent a novel target for the development of more effective antidepressants.


Assuntos
Depressão/genética , Receptores de GABA-A/fisiologia , Animais , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Elevação dos Membros Posteriores/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Receptores de GABA-A/genética , Caracteres Sexuais , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA