RESUMO
Hexabromocyclododecanes (HBCDs) are high production volume chemicals (>20000 ty(-1)) used as flame retardants for plastics and textiles. Lately, we reported on the stereoselective isomerization of beta-HBCDs. Herein we present insights into the mechanism and kinetics of (+)gamma- to (+)alpha- and of (-)gamma- to (-)alpha-HBCD isomerization. Only two of the six bromine atoms migrated, indicating that rearrangements of gamma- to alpha-HBCDs are regio- and stereoselective as well. The apparent first-order isomerization rate constants increased from 0.0013 to 0.0031 to 0.0070 min(-1) at 120, 130, and 140 degrees C, respectively, corresponding to half-lives of 540, 230, and 99 min. Thus, a thermal treatment of materials containing gamma-HBCDs at temperatures >100 degrees C may induce the formation of alpha-HBCDs and, hence, may alter the diastereomeric ratio of a HBCD mixture. The inversion of vicinal dibromides in like-configurations (RR/SS) prevailed, whereas unlike-configurations (RS/SR) were not affected. An intramolecular, stereoselective migration of neighboring bromine atoms via a four-center transition state would explain the observed stereoisomer pattern and first-order kinetics. Despite the fact that vicinal dibromides in HBCDs prefer synclinal (gauche) conformations, antiperiplanar (staggered) conformations are assumed to facilitate concerted 1.2-shifts of both bromine atoms. A conformation analysis revealed that under kinetic control, only those bromine atoms in the more flexible part of the molecules are migrating, whereas those in the conserved triple-turn motive were not affected. Thus, this structural motive, common to all alpha-, beta-, and gamma-HBCDs, is more rigid and less reactive than the flexible part, containing the reacting dibromides in like-configurations.
Assuntos
Hidrocarbonetos Bromados/química , Cinética , Estereoisomerismo , Especificidade por Substrato , TemperaturaRESUMO
With the recent ban of pentabromodiphenyl ether (technical PentaBDE) and octabromodiphenyl ether (technical OctaBDE) mixtures in the European Union (EU) and in parts of the United States, decabromodiphenyl ether (technical DecaBDE) remains as the only polybrominated diphenyl ether (PBDE) based flame retardant available, today. The EU risk assessment report for DecaBDE identified a high level of uncertainty associated with the suitability of the current risk assessment approach for secondary poisoning by debromination of DecaBDE to toxic lower brominated diphenylethers. Addressing this still open question, we investigated concentrations and temporal trends of DecaBDE, NonaBDE, and OctaBDE congeners in the sediments of Greifensee, a small lake located in an urban area close to Zürich, Switzerland. PBDE appeared first in sediment layers corresponding to the mid 1970s. While total Tri-HeptaBDE (BDE-28, -47, -99, -100, -153, -154 and -183) concentrations leveled off in the mid 1990s to about 1.6 ng/g dw (dry weight), DecaBDE levels increased steadily to 7.4 ng/g dw in 2001 with a doubling time of 9 years. Hexabromocyclododecanes (HBCD) appeared in Greifensee sediments in the mid 1980s. They are an important class of flame retardants that are being used in increasing amounts, today. As was observed for DecaBDE, HBCD concentrations were continuously increasing to reach 2.5 ng/g dw in 2001. Next to DecaBDE, all 3 NonaBDE congeners (BDE-208, BDE-207, and BDE-206) and at least 7 out of the 12 possible OctaBDE congeners (BDE-202, BDE-201, BDE-197/204, BDE-198/203, BDE-196/200, BDE-205, and BDE-194) were detected in the sediments of Greifensee. Highest concentrations were found in the surface sediments with 7.2, 0.26, 0.14, and 1.6 ng/g dw for Deca-, Nona-, Octa-, and the sum of Tri-HeptaBDE, respectively. While DecaBDE and NonaBDE were found to increase rapidly, the increase of OctaBDE was slower. Congener patterns of Octa- and NonaBDE present in sediments of Greifensee did not change with time. Consequently, there was no evidence for sediment mediated long-term transformation of PBDE within the observed time span of almost 30 years. Despite the high persistence of DecaBDE, environmental debromination occurs, as shown by the detection of a shift in congener patterns of Octa- and NonaBDE in sediments, compared to the respective congener patterns in technical PBDE products. The OctaBDE congener BDE-202 was detected in sediments, representing a transformation product that is not reported in any of the technical PBDE products. Comparison of OctaBDE congener patterns in sediments with OctaBDE congener patterns from known sources reveals that (i) they were distinctively different from the congener patterns in technical PBDE products and (ii) that they were similar to the OctaBDE patterns in house dust and photodegradation products of DecaBDE, suggesting contributions from these sources.
Assuntos
Retardadores de Chama/análise , Sedimentos Geológicos/química , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/análise , Poluentes Químicos da Água/análise , Éteres , SuíçaRESUMO
Laser ablation in combination with plasma spectrochemistry is an ideal technique for depth profiling analysis, based on signal profiles. However, signal profiles were found to be critically influenced by the characteristics of the ablated particles, especially their composition and size distribution, and consequently transport mechanism and plasma-assisted vaporization efficiency. Even for a refractory material like ceramic, relics of melting following laser irradiation were found, so that particles were non-stoichiometric as compared to the parent material. Estimates of transport efficiency showed that this is highly variable as a function of particle size. Large particles are likely to be lost in the sample chamber. Fine particles are prone to wall reaction, especially in Ar ambient. Variability in particle delivery to the ICP-MS was suspected to be the cause for an element-dependent analyte signal response. Fluctuation in particle vaporization degree as a consequence of plasma temperature instability was also responsible for element-dependent signal profile deviation. However, for a 10-fold higher mass load into the plasma, no direct fractionation effects were observed. Differential transport of chemically-differentiated analyte-carriers is suggested to be primary cause for element-dependent signal structure.
RESUMO
Careful tracing of evidence at the site of a crime must be performed before suspects can be convicted of a crime or homicide. Fingerprints and ballistic control samples are important evidence. A common method used to examine lead bullets is comparison of physical properties such as weight, dimensions, shape, and distinctive markings. However ballistic investigations, for example comparison of characteristic scratches and marks left on fired bullets, do not always give sufficient information. Ballistic abrasion patterns can change for a variety of reasons, e.g. deformation or mechanical strain. Sometimes only particles remain in a victim's body. In such cases trace-element composition and lead-isotope ratios can be compared with those of controls. Elemental composition of particles and deformed bullets have been compared with the elemental fingerprints and isotope ratios of potential bullet types found on suspects. The applicability of the method was studied for two different cases. Data interpretation and several limitations of the technique are also discussed in this paper.