Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38123508

RESUMO

SUMMARY: We present Coracle, an artificial intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e. bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e. 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e. standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g. order or family) to identify groups of interest that can subsequently be run at the ASV level. AVAILABILITY AND IMPLEMENTATION: Coracle can be accessed via a dedicated web server that allows free and simple access: http://www.micportal.org/coracle/index. The underlying code is open-source and available via GitHub https://github.com/SebastianStaab/coracle.git.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , RNA Ribossômico 16S/genética , Bactérias/genética
2.
EMBO Rep ; 24(4): e56826, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36862379

RESUMO

Global warming is decimating coral reefs. We need to implement mitigation and restoration strategies now to prevent coral reefs from disappearing altogether.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Aquecimento Global/prevenção & controle
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941698

RESUMO

Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.


Assuntos
Aclimatação/genética , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Microbiota/genética , Transcriptoma/genética , Animais , Antozoários/classificação , Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Temperatura Alta , Oceano Índico , Microbiota/fisiologia , RNA Ribossômico 16S/genética , RNA-Seq/métodos , Simbiose/genética , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500354

RESUMO

Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral-algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the breakdown of the coral-algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral-algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.


Assuntos
Antozoários/fisiologia , Resposta ao Choque Térmico/fisiologia , Nutrientes , Simbiose/fisiologia , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Animais , Antozoários/genética , Carbono/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Nitrogênio/metabolismo , Estresse Oxidativo , Fotossíntese
5.
Mol Ecol ; 32(9): 2151-2173, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869609

RESUMO

Global habitat degradation heightens the need to better understand patterns of genetic connectivity and diversity of marine biota across geographical ranges to guide conservation efforts. Corals across the Red Sea are subject to pronounced environmental differences, but studies so far suggest that animal populations are largely connected, excepting evidence for a genetic break between the northern-central and southern regions. Here, we investigated population structure and holobiont assemblage of two common pocilloporid corals, Pocillopora verrucosa and Stylophora pistillata, across the Red Sea. We found little evidence for population differentiation in P. verrucosa, except for the southernmost site. Conversely, S. pistillata exhibited a complex population structure with evidence for within-reef and regional genetic differentiation, in line with differences in their reproductive mode (P. verrucosa is a broadcast spawner and S. pistillata is a brooder). Analysis for genomic loci under positive selection identified 85 sites (18 of which were in coding sequences) that distinguished the southern P. verrucosa population from the remainder of the Red Sea population. By comparison, we found 128 loci (24 of which were residing in coding sequences) in S. pistillata with evidence for local adaptation at various sites. Functional annotation of the underlying proteins revealed putative roles in the response to stress, lipid metabolism, transport, cytoskeletal rearrangement, and ciliary function (among others). Microbial assemblages of both coral species showed pervasive association with microalgal symbionts from the genus Symbiodinium (former clade A) and bacteria from the genus Endozoicomonas that exhibited significant differences according to host genotype and environment. The disparity of population genetic and holobiont assemblage patterns even between closely related species (family Pocilloporidae) highlights the need for multispecies investigations to better understand the role of the environment in shaping evolutionary trajectories. It further emphasizes the importance of networks of reef reserves to achieve conservation of genetic variants critical to the future survival of coral ecosystems.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Ecossistema , Oceano Índico , Evolução Biológica , Biota , Recifes de Corais , Simbiose/genética
6.
Glob Chang Biol ; 29(17): 4731-4749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435759

RESUMO

Climate change is fundamentally altering marine and coastal ecosystems on a global scale. While the effects of ocean warming and acidification on ecology and ecosystem functions and services are being comprehensively researched, less attention is directed toward understanding the impacts of human-driven ocean salinity changes. The global water cycle operates through water fluxes expressed as precipitation, evaporation, and freshwater runoff from land. Changes to these in turn modulate ocean salinity and shape the marine and coastal environment by affecting ocean currents, stratification, oxygen saturation, and sea level rise. Besides the direct impact on ocean physical processes, salinity changes impact ocean biological functions with the ecophysiological consequences are being poorly understood. This is surprising as salinity changes may impact diversity, ecosystem and habitat structure loss, and community shifts including trophic cascades. Climate model future projections (of end of the century salinity changes) indicate magnitudes that lead to modification of open ocean plankton community structure and habitat suitability of coral reef communities. Such salinity changes are also capable of affecting the diversity and metabolic capacity of coastal microorganisms and impairing the photosynthetic capacity of (coastal and open ocean) phytoplankton, macroalgae, and seagrass, with downstream ramifications on global biogeochemical cycling. The scarcity of comprehensive salinity data in dynamic coastal regions warrants additional attention. Such datasets are crucial to quantify salinity-based ecosystem function relationships and project such changes that ultimately link into carbon sequestration and freshwater as well as food availability to human populations around the globe. It is critical to integrate vigorous high-quality salinity data with interacting key environmental parameters (e.g., temperature, nutrients, oxygen) for a comprehensive understanding of anthropogenically induced marine changes and its impact on human health and the global economy.


Assuntos
Organismos Aquáticos , Ecossistema , Humanos , Salinidade , Mudança Climática , Recifes de Corais , Água do Mar/química
7.
PLoS Biol ; 18(9): e3000823, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925901

RESUMO

Global change causes widespread decline of coral reefs. In order to counter the anticipated disappearance of coral reefs by the end of this century, many initiatives are emerging, including creation of marine protected areas (MPAs), reef restoration projects, and assisted evolution initiatives. Such efforts, although critically important, are locally constrained. We propose to build a "Noah's Ark" biological repository for corals that taps into the network of the world's public aquaria and coral reef scientists. Public aquaria will serve not only as a reservoir for the purpose of conservation, restoration, and research of reef-building corals but also as a laboratory for the implementation of operations for the selection of stress-resilient and resistant genotypes. The proposed project will provide a global dimension to coral reef education and protection as a result of the involvement of a network of public and private aquaria.


Assuntos
Antozoários , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Animais , Biodiversidade
8.
Proc Natl Acad Sci U S A ; 117(44): 27445-27455, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067398

RESUMO

Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.


Assuntos
Bactérias/crescimento & desenvolvimento , Diatomáceas/metabolismo , Microbiota/fisiologia , Fitoplâncton/metabolismo , Microbiologia da Água , Animais , Bactérias/genética , Cinamatos/metabolismo , Depsídeos/metabolismo , Diatomáceas/genética , Ácidos Dicarboxílicos/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Metagenoma , Metagenômica , Oceanos e Mares , Fitoplâncton/genética , Metabolismo Secundário/fisiologia , Ácido Rosmarínico
9.
BMC Genomics ; 23(1): 143, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177000

RESUMO

BACKGROUND: Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. RESULTS: Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. CONCLUSIONS: Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/ ) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes.


Assuntos
Evolução Molecular , Genoma , Animais , Ordem dos Genes , Genômica , Sintenia
10.
Appl Environ Microbiol ; 88(2): e0188621, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788073

RESUMO

Mutualistic nutrient cycling in the coral-algae symbiosis depends on limited nitrogen (N) availability for algal symbionts. Denitrifying prokaryotes capable of reducing nitrate or nitrite to dinitrogen could thus support coral holobiont functioning by limiting N availability. Octocorals show some of the highest denitrification rates among reef organisms; however, little is known about the community structures of associated denitrifiers and their response to environmental fluctuations. Combining 16S rRNA gene amplicon sequencing with nirS in-silico PCR and quantitative PCR, we found differences in bacterial community dynamics between two octocorals exposed to excess dissolved organic carbon (DOC) and concomitant warming. Although bacterial communities of the gorgonian Pinnigorgia flava remained largely unaffected by DOC and warming, the soft coral Xenia umbellata exhibited a pronounced shift toward Alphaproteobacteria dominance under excess DOC. Likewise, the relative abundance of denitrifiers was not altered in P. flava but decreased by 1 order of magnitude in X. umbellata under excess DOC, likely due to decreased proportions of Ruegeria spp. Given that holobiont C:N ratios remained stable in P. flava but showed a pronounced increase with excess DOC in X. umbellata, our results suggest that microbial community dynamics may reflect the nutritional status of the holobiont. Hence, denitrifier abundance may be directly linked to N availability. This suggests a passive regulation of N cycling microbes based on N availability, which could help stabilize nutrient limitation in the coral-algal symbiosis and thereby support holobiont functioning in a changing environment. IMPORTANCE Octocorals are important members of reef-associated benthic communities that can rapidly replace scleractinian corals as the dominant ecosystem engineers on degraded reefs. Considering the substantial change in the (a)biotic environment that is commonly driving reef degradation, maintaining a dynamic and metabolically diverse microbial community might contribute to octocoral acclimatization. Nitrogen (N) cycling microbes, in particular denitrifying prokaryotes, may support holobiont functioning by limiting internal N availability, but little is known about the identity and (a)biotic drivers of octocoral-associated denitrifiers. Here, we show contrasting dynamics of bacterial communities associated with two common octocoral species, the soft coral Xenia umbellata and the gorgonian Pinnigorgia flava after a 6-week exposure to excess dissolved organic carbon under concomitant warming conditions. The specific responses of denitrifier communities of the two octocoral species aligned with the nutritional status of holobiont members. This suggests a passive regulation based on N availability in the coral holobiont.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Bactérias/genética , Recifes de Corais , Matéria Orgânica Dissolvida , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
11.
Mol Ecol ; 31(19): 4979-4990, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35943423

RESUMO

Ancient DNA (aDNA) has been applied to evolutionary questions across a wide variety of taxa. Here, for the first time, we utilized aDNA from millennia-old fossil coral fragments to gain new insights into a rapidly declining western Atlantic reef ecosystem. We sampled four Acropora palmata fragments (dated 4215 BCE to 1099 CE) obtained from two Florida Keys reef cores. From these samples, we established that it is possible both to sequence aDNA from reef cores and place the data in the context of modern-day genetic variation. We recovered varying amounts of nuclear DNA exhibiting the characteristic signatures of aDNA from the A. palmata fragments. To describe the holobiont sensu lato, which plays a crucial role in reef health, we utilized metagenome-assembled genomes as a reference to identify a large additional proportion of ancient microbial DNA from the samples. The samples shared many common microbes with modern-day coral holobionts from the same region, suggesting remarkable holobiont stability over time. Despite efforts, we were unable to recover ancient Symbiodiniaceae reads from the samples. Comparing the ancient A. palmata data to whole-genome sequencing data from living acroporids, we found that while slightly distinct, ancient samples were most closely related to individuals of their own species. Together, these results provide a proof-of-principle showing that it is possible to carry out direct analysis of coral holobiont change over time, which lays a foundation for studying the impacts of environmental stress and evolutionary constraints.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , DNA Antigo , Dinoflagellida/genética , Ecossistema , Genoma
12.
Mol Ecol ; 31(2): 571-587, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716959

RESUMO

Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Sinais (Psicologia) , Hipóxia/genética , Larva/genética , Estresse Fisiológico/genética
13.
Glob Chang Biol ; 28(10): 3349-3364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218086

RESUMO

Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Recifes de Corais , Periodicidade , Urbanização
14.
Glob Chang Biol ; 28(5): 1753-1765, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343392

RESUMO

Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021-2040), mid-century (2041-2060) and late-century (2081-2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
15.
Glob Chang Biol ; 28(14): 4229-4250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475552

RESUMO

The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.


Assuntos
Antozoários , Mudança Climática , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema
16.
PLoS Biol ; 17(9): e3000483, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545807

RESUMO

Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the "-omics" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Expedições , Microbiota , Animais , Metabolômica , Metagenômica , Oceano Pacífico , Simbiose
17.
Bioessays ; 42(7): e2000004, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32548850

RESUMO

Animals and plants are metaorganisms and associate with microbes that affect their physiology, stress tolerance, and fitness. Here the hypothesis that alteration of the microbiome may constitute a fast-response mechanism to environmental change is examined. This is supported by recent reciprocal transplant experiments with reef corals, which have shown that their microbiome adapts to thermally variable habitats and changes over time when transplanted into different environments. Further, inoculation of corals with beneficial bacteria increases their stress tolerance. But corals differ in their ability to flexibly associate with different bacteria. How scales of microbiome flexibility may reflect different metaorganism adaptation mechanisms is discussed and future directions for research are pinpointed. It is posited that microbiome flexibility is a broad phenomenon that contributes to the ability of organisms to respond to environmental change. Importantly, adapting with microbial help may provide an alternate route to organismal adaptation that facilitates rapid responses.


Assuntos
Antozoários , Microbiota , Adaptação Fisiológica , Animais , Bactérias/genética , Simbiose
18.
Mol Ecol ; 30(22): 5888-5899, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34473860

RESUMO

Ocean acidification is posing a threat to calcifying organisms due to the increased energy requirements of calcification under high CO2 conditions. The ability of scleractinian corals to cope with future ocean conditions will thus depend on their ability to fulfil their carbon requirement. However, the primary productivity of coral holobionts is limited by low nitrogen (N) availability in coral reef waters. Here, we employed CO2  seeps of Tutum Bay (Papua New Guinea) as a natural laboratory to understand how coral holobionts offset their increased energy requirements under high CO2 conditions. Our results demonstrate for the first time that under high pCO2 conditions, N assimilation pathways of Pocillopora damicornis are jointly modified. We found that diazotroph-derived N assimilation rates in the Symbiodiniaceae were significantly higher in comparison to an ambient CO2 control site, concomitant with a restructured diazotroph community and the specific prevalence of an alpha-proteobacterium. Further, corals at the high CO2  site also had increased feeding rates on picoplankton and in particular exhibited selective feeding on Synechococcus sp., known to be rich in N. Given the high abundance of picoplankton in oligotrophic waters at large, our results suggest that corals exhibiting flexible diazotrophic communities and capable of exploiting N-rich picoplankton sources to offset their increased N requirements may be able to cope better in a high pCO2 world.


Assuntos
Antozoários , Animais , Dióxido de Carbono , Recifes de Corais , Concentração de Íons de Hidrogênio , Nitrogênio , Água do Mar
19.
Mol Ecol ; 30(2): 391-405, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249664

RESUMO

All metazoans are in fact holobionts, resulting from the association of several organisms, and organismal adaptation is then due to the composite response of this association to the environment. Deciphering the mechanisms of symbiont acquisition in a holobiont is therefore essential to understanding the extent of its adaptive capacities. In cnidarians, some species acquire their photosynthetic symbionts directly from their parents (vertical transmission) but may also acquire symbionts from the environment (horizontal acquisition) at the adult stage. The Mediterranean snakelocks sea anemone, Anemonia viridis (Forskål, 1775), passes down symbionts from one generation to the next by vertical transmission, but the capacity for such horizontal acquisition is still unexplored. To unravel the flexibility of the association between the different host lineages identified in A. viridis and its Symbiodiniaceae, we genotyped both the animal hosts and their symbiont communities in members of host clones in five different locations in the North Western Mediterranean Sea. The composition of within-host-symbiont populations was more dependent on the geographical origin of the hosts than their membership to a given lineage or even to a given clone. Additionally, similarities in host-symbiont communities were greater among genets (i.e. among different clones) than among ramets (i.e. among members of the same given clonal genotype). Taken together, our results demonstrate that A. viridis may form associations with a range of symbiotic dinoflagellates and suggest a capacity for horizontal acquisition. A mixed-mode transmission strategy in A. viridis, as we posit here, may help explain the large phenotypic plasticity that characterizes this anemone.


Assuntos
Antozoários , Dinoflagellida , Anêmonas-do-Mar , Animais , Antozoários/genética , Mar Mediterrâneo , Anêmonas-do-Mar/genética , Simbiose/genética
20.
Mol Ecol ; 30(18): 4466-4480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342082

RESUMO

Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching >5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico , Oceano Índico , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA