Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 41, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369453

RESUMO

BACKGROUND: Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS: Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS: Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.


Assuntos
Elementos da Série dos Lantanídeos , Lantânio , Dióxido de Silício , Elementos da Série dos Lantanídeos/metabolismo , Metanol , Solo , Bactérias/genética , Fosfatos/metabolismo , Minerais/metabolismo
2.
PLoS One ; 9(3): e91682, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618705

RESUMO

Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimA(Bm) gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Melioidose/microbiologia , Austrália , Humanos , Proteínas dos Microfilamentos/genética , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA