Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555424

RESUMO

Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.


Assuntos
Células Endoteliais , Miocárdio , Animais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mamíferos
2.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718071

RESUMO

With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neovascularização Fisiológica , Reepitelização , Regeneração , Pele , Cicatrização , Ferimentos e Lesões , Animais , Matriz Extracelular/metabolismo , Humanos , Pele/lesões , Pele/metabolismo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
3.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
4.
Cell Death Dis ; 14(7): 437, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454154

RESUMO

Pulmonary fibrosis is a devastating disease, in which fibrotic tissue progressively replaces lung alveolar structure, resulting in chronic respiratory failure. Alveolar type II cells act as epithelial stem cells, being able to transdifferentiate into alveolar type I cells, which mediate gas exchange, thus contributing to lung homeostasis and repair after damage. Impaired epithelial transdifferentiation is emerging as a major pathogenetic mechanism driving both onset and progression of fibrosis in the lung. Here, we show that lung endothelial cells secrete angiocrine factors that regulate alveolar cell differentiation. Specifically, we build on our previous data on the anti-fibrotic microRNA-200c and identify the Vascular Endothelial Growth Factor receptor 1, also named Flt1, as its main functional target in endothelial cells. Endothelial-specific knockout of Flt1 reproduces the anti-fibrotic effect of microRNA-200c against pulmonary fibrosis and results in the secretion of a pool of soluble factors and matrix components able to promote epithelial transdifferentiation in a paracrine manner. Collectively, these data indicate the existence of a complex endothelial-epithelial paracrine crosstalk in vitro and in vivo and position lung endothelial cells as a relevant therapeutic target in the fight against pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Transdiferenciação Celular , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
NPJ Regen Med ; 8(1): 8, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774354

RESUMO

Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.

6.
Trends Pharmacol Sci ; 43(11): 894-905, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779965

RESUMO

Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.


Assuntos
Produtos Biológicos , Medicamentos Biossimilares , Cardiopatias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Cardiopatias/tratamento farmacológico , Humanos
7.
Environ Int ; 164: 107272, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526297

RESUMO

The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Lasers , Pandemias , Esterilização
8.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680575

RESUMO

The loss of skin integrity has always represented a major challenge for clinicians dealing with dermal defects, such as ulcers (diabetic, vascular and chronic), postoncologic resections (i.e., radical vulvectomy) or dermatologic disorders. The introduction in recent decades of acellular dermal matrices (ADMs) supporting the repair and restoration of skin functionality represented a significant step toward achieving clean wound repair before performing skin grafts. Hard-to-heal ulcers generally depend on local ischemia and nonadequate vascularization. In this context, one possible innovative approach could be the prevascularization of matrices with vessel-forming cells (inosculation). This paper presents a comparative analysis of the most widely used dermal templates, i.e., Integra® Bilayer Matrix Wound Dressing, PELNAC®, PriMatrix® Dermal Repair Scaffold, Endoform® Natural Dermal Template, and Myriad Matrix®, testing their ability to be colonized by human adult dermal microvascular endothelial cells (ADMECs) and to induce and support angiogenesis in vitro and in vivo. By in vitro studies, we demonstrated that Integra® and PELNAC® possess superior pro-adhesive and pro-angiogenetic properties. Animal models allowed us to demonstrate the ability of preseeded ADMECs on Integra® to promote the engraftment, integration and vascularization of ADMs at the site of application.

9.
NPJ Biofilms Microbiomes ; 5(1): 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602310

RESUMO

Resolution of bacterial infections is often hampered by both resistance to conventional antibiotic therapy and hiding of bacterial cells inside biofilms, warranting the development of innovative therapeutic strategies. Here, we report the efficacy of blue laser light in eradicating Pseudomonas aeruginosa cells, grown in planktonic state, agar plates and mature biofilms, both in vitro and in vivo, with minimal toxicity to mammalian cells and tissues. Results obtained using knock-out mutants point to oxidative stress as a relevant mechanism by which blue laser light exerts its anti-microbial effect. Finally, the therapeutic potential is confirmed in a mouse model of skin wound infection. Collectively, these data set blue laser phototherapy as an innovative approach to inhibit bacterial growth and biofilm formation, and thus as a realistic treatment option for superinfected wounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Lasers , Luz , Estresse Oxidativo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos da radiação , Animais , Linhagem Celular , Meios de Cultura , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infecções por Pseudomonas/terapia , Radioterapia/métodos , Resultado do Tratamento , Infecção dos Ferimentos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA