RESUMO
Loss of gut mucosal integrity and an aberrant gut microbiota are proposed mechanisms contributing to chronic inflammation and increased morbidity and mortality during antiretroviral-treated HIV disease. Sexual practice has recently been uncovered as a major source of microbiota variation, potentially confounding prior observations of gut microbiota alterations among persons with HIV (PWH). To overcome this and other confounding factors, we examine a well-powered subset of AGEhIV Cohort participants comprising antiretroviral-treated PWH and seronegative controls matched for age, body-mass index, sex, and sexual practice. We report significant gut microbiota differences in PWH regardless of sex and sexual practice including Gammaproteobacteria enrichment, Lachnospiraceae and Ruminococcaceae depletion, and decreased alpha diversity. Men who have sex with men (MSM) exhibit a distinct microbiota signature characterized by Prevotella enrichment and increased alpha diversity, which is linked with receptive anal intercourse in both males and females. Finally, the HIV-associated microbiota signature correlates with inflammatory markers including suPAR, nadir CD4 count, and prevalence of age-associated noncommunicable comorbidities.
Assuntos
Disbiose/complicações , Trato Gastrointestinal/patologia , Infecções por HIV/complicações , Doenças não Transmissíveis , Comportamento Sexual , Biodiversidade , Estudos de Casos e Controles , Comorbidade , Microbioma Gastrointestinal , Homossexualidade Masculina , Humanos , Inflamação/patologia , Modelos Lineares , Modelos Logísticos , MasculinoRESUMO
Invariant natural killer T (iNKT) cells are innate-like T cells that respond to lipid antigens presented by CD1d. These immunoregulatory cells have the capacity for rapid cytokine release after antigen recognition and are essential for the activation of multiple arms of the immune response. HIV-1 infection is associated with iNKT cell depletion in the peripheral blood; however, their role in the gastrointestinal-associated lymphoid tissue (GALT) is less well studied. Our results show that iNKT cells are found at a higher frequency in GALT compared with blood, particularly in HIV-1 elite controllers. The capacity of iNKT cells to produce interleukin-4 (IL-4) and IL-10 in the GALT was associated with less immune activation and lower markers of microbial translocation, whereas regulatory T cell frequency showed positive associations with immune activation. We hypothesized that the composition of the microbiota would influence iNKT cell frequency and function. We found positive associations between the abundance of several Bacteroides species and iNKT cell frequency and their capacity to produce IL-4 in the GALT but not in the blood. Overall, our results are consistent with the hypothesis that GALT iNKT cells, influenced by certain bacterial species, may have a key role in regulating immune activation in HIV-1 infection.
Assuntos
Bacteroides/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Intestinos/imunologia , Células T Matadoras Naturais/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Antígenos CD1d/metabolismo , Células Cultivadas , Feminino , Humanos , Imunidade Inata , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Lipídeos/imunologia , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/microbiologia , Células T Matadoras Naturais/virologia , Adulto JovemRESUMO
Increased mortality in antiretroviral (ARV)-treated, HIV-infected individuals has been attributed to persistent immune dysfunction, in part due to abnormalities at the gastrointestinal barrier. In particular, the poor reconstitution of gastrointestinal Th17 cells correlates with residual translocation of dysbiotic, immunostimulatory microflora across a compromised intestinal epithelial barrier. We have previously demonstrated that oral probiotics promote increased intestinal CD4(+) T-cell reconstitution during ARV treatment in a non-human primate model of HIV infection; however, essential mucosal T-cell subsets, such as Th17 cells, had limited recovery. Here, we sought to promote Th17 cell recovery by administering interleukin (IL)-21 to a limited number of ARV-treated, probiotic-supplemented, Simian Immunodeficiency Virus (SIV)-infected pigtailed macaques. We demonstrate that probiotic and IL-21 supplementation of ARVs are associated with enhanced polyfunctional Th17 expansion and reduced markers of microbial translocation and dysbiosis as compared with infected controls receiving ARVs alone. Importantly, treatment resulted in fewer morbidities compared with controls, and was independent of increased immune activation or loss of viral suppression. We propose that combining ARVs with therapeutics aimed at restoring intestinal stasis may significantly improve disease prognosis of ARV-treated, HIV-infected individuals.