Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 201(8): 2232-2243, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185516

RESUMO

Metal-induced hypersensitivity is driven by dendritic cells (DCs) that migrate from the site of exposure to the lymph nodes, upregulate costimulatory molecules, and initiate metal-specific CD4+ T cell responses. Chronic beryllium disease (CBD), a life-threatening metal-induced hypersensitivity, is driven by beryllium-specific CD4+ Th1 cells that expand in the lung-draining lymph nodes (LDLNs) after beryllium exposure (sensitization phase) and are recruited back to the lung, where they orchestrate granulomatous lung disease (elicitation phase). To understand more about how beryllium exposures impact DC function during sensitization, we examined the early events in the lung and LDLNs after pulmonary exposure to different physiochemical forms of beryllium. Exposure to soluble or crystalline forms of beryllium induced alveolar macrophage death/release of IL-1α and DNA, enhanced migration of CD80hi DCs to the LDLNs, and sensitized HLA-DP2 transgenic mice after single low-dose exposures, whereas exposures to insoluble particulate forms beryllium did not. IL-1α and DNA released by alveolar macrophages upregulated CD80 on immature BMDC via IL-1R1 and TLR9, respectively. Intrapulmonary exposure of mice to IL-1R and TLR9 agonists without beryllium was sufficient to drive accumulation of CD80hi DCs in the LDLNs, whereas blocking both pathways prevented accumulation of CD80hi DCs in the LDLNs of beryllium-exposed mice. Thus, in contrast to particulate forms of beryllium, which are poor sensitizers, soluble or crystalline forms of beryllium promote death of alveolar macrophages and their release of IL-1α and DNA, which act as damage-associated molecular pattern molecules to enhance DC function during beryllium sensitization.


Assuntos
Beriliose/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Pulmão/patologia , Receptores Tipo I de Interleucina-1/metabolismo , Receptor Toll-Like 9/metabolismo , Alérgenos/imunologia , Animais , Berílio/imunologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Doença Crônica , ELISPOT , Humanos , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética
2.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255768

RESUMO

Chronic beryllium disease (CBD) is a metal hypersensitivity/autoimmune disease in which damage-associated molecular patterns (DAMPs) promote a break in T cell tolerance and expansion of Be2+/self-peptide-reactive CD4+ T cells. In this study, we investigated the mechanism of cell death induced by beryllium particles in alveolar macrophages (AMs) and its impact on DAMP release. We found that phagocytosis of Be led to AM cell death independent of caspase, receptor-interacting protein kinases 1 and 3, or ROS activity. Before cell death, Be-exposed AMs secreted TNF-α that boosted intracellular stores of IL-1α followed by caspase-8-dependent fragmentation of DNA. IL-1α and nucleosomal DNA were subsequently released from AMs upon loss of plasma membrane integrity. In contrast, necrotic AMs released only unfragmented DNA and necroptotic AMs released only IL-1α. In mice exposed to Be, TNF-α promoted release of DAMPs and was required for the mobilization of immunogenic DCs, the expansion of Be-reactive CD4+ T cells, and pulmonary inflammation in a mouse model of CBD. Thus, early autocrine effects of particle-induced TNF-α on AMs led to a break in peripheral tolerance. This potentially novel mechanism may underlie the known relationship between fine particle inhalation, TNF-α, and loss of peripheral tolerance in T cell-mediated autoimmune disease and hypersensitivities.


Assuntos
Beriliose/imunologia , Linfócitos T CD4-Positivos , Macrófagos Alveolares , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Doença Crônica , Feminino , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA