RESUMO
Although quantitative trait locus (QTL) mapping has been successful in describing the genetic architecture of complex traits, the molecular basis of quantitative variation is less well understood, especially in plants such as maize that have large genome sizes. Regulatory changes at the teosinte branched1 (tb1) gene have been proposed to underlie QTLs of large effect for morphological differences that distinguish maize (Zea mays ssp. mays) from its wild ancestors, the teosintes (Z. mays ssp. parviglumis and mexicana). We used a fine mapping approach to show that intergenic sequences approximately 58-69 kb 5' to the tb1 cDNA confer pleiotropic effects on Z. mays morphology. Moreover, using an allele-specific expression assay, we found that sequences >41 kb upstream of tb1 act in cis to alter tb1 transcription. Our findings show that the large stretches of noncoding DNA that comprise the majority of many plant genomes can be a source of variation affecting gene expression and quantitative phenotypes.
Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Zea mays/genéticaRESUMO
The outer epidermal plant cell wall and cuticle play an important role in regulating both abiotic and biotic interactions between the plant and its environment. In addition to acting as a protective barrier that limits water loss, the effects of detrimental irradiation and invasion by pathogens, the epidermis also offers an interface that is inert to interactions between organs and ensures proper separation and expansion of organs at the growing points of the plant. Here, we describe the molecular cloning and characterization of HOTHEAD (HTH), a gene required to limit cellular interactions between contacting epidermal cells during floral development. HTH is a member of a small gene family in Arabidopsis and encodes an enzyme related to a group of FAD-containing oxidoreductases that have been described in several other species. Characterization of 11 independently derived mutant alleles suggests that key amino acids are shared between these related groups of enzymes and identify a cluster of other functionally important residues that are highly conserved only within the Arabidopsis gene family. Our findings add this new type of enzyme to a growing list of enzymes that have been shown to be involved in regulating post-genital organ fusion. Expression analysis of the HTH gene shows that it is expressed in all tissues tested, including roots, and is not epidermis-specific. Furthermore, the sequence data unequivocally show that none of the alleles isolated are epigenetic alleles as suggested by genetic behavior previously observed at this locus.