Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chemosphere ; 336: 139285, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353170

RESUMO

The Amazon is the largest river by discharge volume and one of the most biodiverse biomes in the world. Lately, there has been a rapid increase of the urban population in the region, which has been translated into a growing emission of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) into surface water bodies. This study provides the most comprehensive evaluation of the PAH contamination levels in surface waters of the Amazon basin. We investigated the occurrence and potential sources of 16 priority PAHs and characterised their risks for freshwater ecosystems. For this, we took 40 water samples from different sites along the Brazilian part of the Amazon River, including three major tributaries, and smaller rivers crossing the main urban areas. The results of this study show that PAHs are widespread contaminants in rivers of the Brazilian Amazon. The sum of the total concentration of the 16 priority PAHs reached values of 134 ng L-1 in the Amazon River, and 163 ng L-1 near densely populated areas. On the other hand, the total PAH concentration was generally lower in the monitored tributaries. In most samples, the contamination pattern was dominated by high molecular weight PAHs, suggesting a major contribution of pyrogenic sources, although petrogenic contamination was also present in some locations near urban areas. We assessed ecological risks posed by PAH mixtures using a hazard index. The results indicated that PAH contamination is not likely to pose direct toxic effects for Amazonian freshwater organisms, however continued monitoring is recommended near densely populated areas.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Água , China , Medição de Risco
2.
Water Res ; 232: 119707, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773351

RESUMO

Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55-5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55-5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1-5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 - 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 - 4.3 × 108) for translocation. Rescaled exposure concentrations (1-5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Rios/química , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco
3.
Ecotoxicology ; 20(4): 625-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21267648

RESUMO

The risk assessment of pesticides for freshwater ecosystems in the Amazon has relied on the use of toxicity data and water quality criteria derived for temperate regions due to a lack of ecotoxicological studies performed with indigenous species. This leaves an unknown margin of uncertainty for the protection of Amazonian ecosystems, as differences in environmental conditions and species sensitivity are not taken into account. To address this issue, the acute toxic effects of malathion (an organophosphorus insecticide) and carbendazim (a benzimidazole fungicide) were assessed on five fish and five freshwater invertebrates endemic to the Amazonian region. Subsequently, the intrinsic sensitivity of Amazonian and temperate freshwater species was compared using the species sensitivity distribution (SSD) concept. Amazonian species sensitivity to malathion was found to be similar to that of their temperate counterparts, with LC50 values ranging between 111 and 1507 µg/l for fish species and 2.1-426 µg/l for arthropod species. However, Amazonian fish appeared to be slightly less sensitive for carbendazim than temperate fish with LC50 values ranging between 1648 and 4238 µg/l, and Amazonian invertebrates were found to be significantly more resistant than their temperate counterparts, with LC50 values higher than 16000 µg/l. The results of this study suggest that for these compounds, the use of water quality criteria derived with laboratory toxicity data for temperate species will result in a sufficient protection level for Amazonian freshwater organisms. Recommendations for further research include the validation of threshold concentrations derived with temperate standard test species and with the SSD model with semi-field experiments considering larger assemblages of indigenous species under local environmental conditions.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Fungicidas Industriais/toxicidade , Inseticidas/toxicidade , Malation/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Peixes , Invertebrados/efeitos dos fármacos , Medição de Risco , Rios/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
4.
Water Res ; 200: 117251, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087513

RESUMO

Only a limited number of households in the Amazon are served by sewage collection or treatment facilities, suggesting that there might be a significant emission of pharmaceuticals and other wastewater contaminants into freshwater ecosystems. In this work, we performed a wide-scope screening to assess the occurrence of pharmaceuticals, illicit drugs and their metabolites in freshwater ecosystems of the Brazilian Amazon. Our study included 40 samples taken along the Amazon River, in three of its major tributaries, and in small tributaries crossing four important urban areas (Manaus, Santarém, Macapá, Belém). More than 900 compounds were investigated making use of target and suspect screening approaches, based on liquid chromatography coupled to high-resolution mass spectrometry with ion mobility separation. Empirical collision-cross section (CCS) values were used to help and confirm identifications in target screening, while in the suspect screening approach CCS values were predicted using Artificial Neural Networks to increase the confidence of the tentative identification. In this way, 51 compounds and metabolites were identified. The highest prevalence was found in streams crossing the urban areas of Manaus, Macapá and Belém, with some samples containing up to 30 - 40 compounds, while samples taken in Santarém showed a lower number (8 - 11), and the samples taken in the main course of the Amazon River and its tributaries contained between 1 and 7 compounds. Most compounds identified in areas with significant urban impact belonged to the analgesics and antihypertensive categories, followed by stimulants and antibiotics. Compounds such as caffeine, cocaine and its metabolite benzoylecgonine, and cotinine (the metabolite of nicotine), were also detected in areas with relatively low anthropogenic impact and showed the highest total prevalence. This study supports the need to improve the sanitation system of urban areas in the Brazilian Amazon and the development of follow-up studies aimed at quantifying exposure levels and risks for Amazonian freshwater biodiversity.


Assuntos
Drogas Ilícitas , Preparações Farmacêuticas , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise
5.
Arch Environ Contam Toxicol ; 58(3): 765-71, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19847472

RESUMO

Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC(50)-96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC(50) values ranging from 2900 to 7270 microg/L for fish and from 0.3 to 319 microg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems.


Assuntos
Peixes , Inseticidas/toxicidade , Invertebrados/efeitos dos fármacos , Metil Paration/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Água Doce , Concentração de Íons de Hidrogênio , Dose Letal Mediana , Testes de Toxicidade Aguda
6.
Integr Environ Assess Manag ; 4(1): 94-104, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17973565

RESUMO

The risk of 11 pesticides to the soil environment was assessed in a 3-tiered approach at 4 sites located in Central Amazon, near Manaus, the capital of the Amazonas State in Brazil. Toxicity-exposure ratios (TERs), as routinely used for the registration of pesticides in the European Union, were calculated. First, the predicted environmental concentration (PEC) values in soil on the basis of real application rates and soil properties but temperate DT50 (degradation time of 50%) values were compared with temperate effect values (earthworm LC50s; median lethal concentrations), both gained from literature. Second, the risk assessment was refined by the use of DT50 values from tropical soils (measured for 7 compounds and estimated for 4) but still with temperate effect values because only a few results from tests performed under tropical conditions are available. Third, the outcome of this exercise was evaluated in a plausibility check with the use of the few results of effect tests, which were performed under tropical conditions. However, the lack of such data allowed this check only for 6 of 11 pesticides. The results are discussed in light of pesticide use in the Amazon in general, as well as compared with the registration status of these pesticides in other countries. Finally, suggestions are given for which kinds of studies are needed to improve the environmental risk assessment of pesticides in tropical regions.


Assuntos
Oligoquetos/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Animais , Brasil , Clima , Dose Letal Mediana , Nível de Efeito Adverso não Observado , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA