Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ArXiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37961742

RESUMO

Single-cell RNA sequencing (scRNA-seq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this paper, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and Single-CellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.

2.
Sci Adv ; 10(29): eadp6039, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028813

RESUMO

The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.


Assuntos
Diferenciação Celular , Hipocampo , Neurogênese , Neurônios , Fatores de Transcrição SOXC , Animais , Hipocampo/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Neurônios/citologia , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Diferenciação Celular/genética , Neurogênese/genética , Camundongos , Transcrição Gênica , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260428

RESUMO

The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA