Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Sci ; 115(8): 2839-2845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38898727

RESUMO

By taking advantage of forward genetic analysis in mice, we have demonstrated that Pak1 plays a crucial role during DMBA/TPA skin carcinogenesis. Although Pak1 has been considered to promote cancer development, its overall function remains poorly understood. To clarify the functional significance of Pak1 in detail, we sought to evaluate the possible effect of an allosteric inhibitor against PAK1 (NVS-PAK1-1) on a syngeneic mouse model. To this end, we established two cell lines, 9AS1 and 19AS1, derived from DMBA/TPA-induced squamous cell carcinoma (SCC) that engrafted in FVB mice. Based on our present results, NVS-PAK1-1 treatment significantly inhibited the growth of tumors derived from 9AS1 and 19AS1 cells in vitro and in vivo. RNA-sequencing analysis on the engrafted tumors indicates that NVS-PAK1-1 markedly potentiates the epidermal cell differentiation and enhances the immune response in the engrafted tumors. Consistent with these observations, we found an expansion of Pan-keratin-positive regions and potentially elevated infiltration of CD8-positive immune cells in NVS-PAK1-1-treated tumors as examined by immunohistochemical analyses. Together, our present findings strongly suggest that PAK1 is tightly linked to the development of SCC, and that its inhibition is a promising therapeutic strategy against SCC.


Assuntos
Carcinoma de Células Escamosas , Modelos Animais de Doenças , Neoplasias Cutâneas , Quinases Ativadas por p21 , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Camundongos , Linhagem Celular Tumoral , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Feminino , Diferenciação Celular/efeitos dos fármacos , Acetato de Tetradecanoilforbol , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos
2.
Cancer Sci ; 111(8): 2850-2860, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535988

RESUMO

CENP-50/U is a component of the CENP-O complex (CENP-O/P/Q/R/U) and localizes to the centromere throughout the cell cycle. Aberrant expression of CENP-50/U has been reported in many types of cancers. However, as Cenp-50/U-deficient mice die during early embryogenesis, its functions remain poorly understood in vivo. To investigate the role of Cenp-50/U in skin carcinogenesis, we generated Cenp-50/U conditional knockout (K14CreER -Cenp-50/Ufl/fl ) mice and subjected them to the 7,12-dimethylbenz(a)anthracene (DMBA)/terephthalic acid (TPA) chemical carcinogenesis protocol. As a result, early-stage papillomas decreased in Cenp-50/U-deficient mice. In contrast, Cenp-50/U-deficient mice demonstrated almost the same carcinoma incidence as control mice. Furthermore, mRNA expression analysis using DMBA/TPA-induced papillomas and carcinomas revealed that Cenp-50/U expression levels in papillomas were significantly higher than in carcinomas. These results suggest that Cenp-50/U functions mainly in early papilloma development and it has little effect on malignant conversion.


Assuntos
Carcinogênese/patologia , Proteínas de Ciclo Celular/deficiência , Neoplasias Experimentais/patologia , Papiloma/patologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Proteínas de Ciclo Celular/genética , Humanos , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Papiloma/induzido quimicamente , Papiloma/genética , Ácidos Ftálicos/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
3.
Neurol Sci ; 39(8): 1401-1407, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29748936

RESUMO

PURPOSE: We developed a new analytical method to quantify the dopamine transporter (DAT) radiation dose in the striatum on [123I] FP-CIT single-photon emission computed tomography (SPECT). This method is based on the dopamine transporter standardized uptake value (DaTSUV). The purpose of this study was to compare DaTSUV with the classical specific binding ratio (SBR) in the discrimination of dopaminergic neurodegenerative diseases (dNDD) from non-dNDD. METHOD: Seventy-seven consecutive patients who underwent DaTscan were included. Patients were divided into a dNDD group (n = 44; 24 men, 20 women; median age 73 years) and a non-dNDD group (n = 33; 14 men, 19 women; median age 75 years) based on their clinical diagnoses. The relationship between each method was evaluated by Pearson's correlation coefficient. Differences in SBR and DaTSUV in each group were evaluated by t test. Pairwise comparison of receiver operating characteristic (ROC) curve analysis was performed to compare the discriminating abilities of each method according to the standard error of the area under the curve (AUC). A value of p < 0.05 was considered statistically significant. RESULT: There was a significant strong correlation between DaTSUV and SBR (r = 0.910 [95% CI = 0.862-0.942], p < 0.001). The dNDD group showed significantly lower SBR (3.48 [1.25-7.91] vs 6.58 [3.81-11.1], p < 0.001) and DaTSUV (4.91 [1.59-13.6] vs 8.61 [2.29-15.6], p < 0.001) than the non-dNDD group. The discriminating ability of SBR (AUC = 0.918) was significantly higher than that of DaTSUV (AUC = 0.838, p = 0.0176). CONCLUSION: DaTSUV has a good correlation with SBR, but it could not exceed SBR for discriminating dNDD from non-dNDD.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estatística como Assunto , Tomógrafos Computadorizados
4.
Cancer Sci ; 108(11): 2142-2148, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795467

RESUMO

CENP-R is a component of the CENP-O complex, including CENP-O, CENP-P, CENP-Q, CENP-R, and CENP-U and is constitutively localized to kinetochores throughout the cell cycle in vertebrates. CENP-R-deficient chicken DT40 cells are viable and show a very minor effect on mitosis. To investigate the functional roles of CENP-R in vivo, we generated CENP-R-deficient mice (Cenp-r-/- ). Mice heterozygous or homozygous for Cenp-r null mutation are viable and healthy, with no apparent defect in growth and morphology, indicating Cenp-r is not essential for normal development. Accordingly, to investigate the role of the Cenp-r gene in skin carcinogenesis, we subjected Cenp-r-/- mice to the 7,12-dimethylbenz(a)anthracene (DMBA)/TPA chemical carcinogenesis protocol and monitored tumor development. As a result, Cenp-r-/- mice initially developed significantly more papillomas than control wild-type mice. However, papillomas in Cenp-r-/- mice showed a decrease of proliferative cells and an increase of apoptotic cells. As a result, they did not grow bigger and some papillomas showed substantial regression. Furthermore, papillomas in Cenp-r-/- mice showed lower frequency of malignant conversion to squamous cell carcinomas. These results indicate Cenp-r functions bilaterally in cancer development: during early developmental stages, Cenp-r functions as a tumor suppressor, but during the expansion and progression of papillomas it functions as a tumor-promoting factor.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Centrômero/genética , Proteínas Nucleares/genética , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Oncogênicas/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Proteínas Supressoras de Tumor/genética
5.
Mamm Genome ; 26(11-12): 630-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481120

RESUMO

Hair length in mammals is generally regulated by the hair cycle, and its disruption leads to abnormal hair morphogenesis in several species. FGF5, one of the hair cycle regulators, has a role in inducing catagen, and that mutation causes abnormal hair length in both sexes in humans, mice, dogs, and cats. Male-dominant long-haired coat (MALC) is an inbred strain of Syrian hamster exhibiting spontaneous long hair in males. After castration, MALC exhibited significantly shorter hair than the control individuals, but testosterone administration to castrated MALC showed reversion to the original phenotype. Moreover, flutamide administration led to MALC phenotype repression. Histological analysis revealed that hair follicle regression was shown in the wild-type 4 weeks after depilation, but that of MALC remained in the anagen phase. We detected a c.546delG of Fgf5 in MALC (Fgf5malc) that might lead to truncation resulting from a frame shift in FGF5 (p.Arg184GlyfsX6). Additionally, homozygous Fgf5malc was only detected in long-haired (Slc:Syrian×MALC)F2 and (J-2-Nn×MALC)F2 progenies, and all homozygous wild and heterozygous Fgf5malc individuals showed normal hair length. Thus, Fgf5malc leads to male-dominant long hair via a prolonged anagen phase which is affected by testosterone in hamsters. To our knowledge, this report is the first to present the sexual dimorphism of hair length caused by the Fgf5 mutation.


Assuntos
Fator 5 de Crescimento de Fibroblastos/genética , Cabelo/crescimento & desenvolvimento , Mesocricetus/genética , Animais , Sequência de Bases , Análise Mutacional de DNA , Feminino , Genes Dominantes , Estudos de Associação Genética , Masculino , Fenótipo , Deleção de Sequência , Testosterona/fisiologia
6.
Nature ; 445(7129): 761-5, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17230190

RESUMO

Mice of the C57BL/6 strain are resistant to the development of skin squamous carcinomas (SCCs) induced by an activated Ras oncogene, whereas FVB/N mice are highly susceptible. The genetic basis of this difference in phenotype is unknown. Here we show that susceptibility to SCC is under the control of a carboxy-terminal polymorphism in the mouse Ptch gene. F1 hybrids between C57BL/6 and FVB/N strains ((B6FVB)F1) are resistant to Ras-induced SCCs, but resistance can be overcome either by elimination of the C57BL/6 Ptch allele (Ptch(B6)) or by overexpression of the FVB/N Ptch allele (Ptch(FVB)) in the epidermis of K5Hras-transgenic (B6FVB)F1 hybrid mice. The human Patched (PTCH) gene is a classical tumour suppressor gene for basal cell carcinomas and medulloblastomas, the loss of which causes increased signalling through the Sonic Hedgehog (SHH) pathway. SCCs that develop in PtchB6+/- mice do not lose the wild-type Ptch gene or show evidence of increased SHH signalling. Although Ptch(FVB) overexpression can promote SCC formation, continued expression is not required for tumour maintenance, suggesting a role at an early stage of tumour cell lineage commitment. The Ptch polymorphism affects Hras-induced apoptosis, and binding to Tid1, the mouse homologue of the Drosophila l(2)tid tumour suppressor gene. We propose that Ptch occupies a critical niche in determining basal or squamous cell lineage, and that both tumour types can arise from the same target cell depending on carcinogen exposure and host genetic background.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Genes ras , Polimorfismo Genético/genética , Receptores de Superfície Celular/genética , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular , Transformação Celular Neoplásica , Cruzamentos Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteínas ras/genética
7.
Carcinogenesis ; 33(11): 2260-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843548

RESUMO

MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Ligação Genética , Papiloma/genética , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/toxicidade , Proteína Supressora de Tumor p53/fisiologia , Animais , Carcinógenos/toxicidade , Cruzamentos Genéticos , Feminino , Japão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Papiloma/induzido quimicamente , Papiloma/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia
8.
Biomed Res ; 43(3): 91-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35718449

RESUMO

Meis1 (myeloid ecotropic insertion site 1) is known to be related to embryonic development and cancer. In this study, to analyze the function of Meis1 in neural stem cells, we crossed Meis1fl/fl (Meis1 floxed) mice with Nestin-Cre mice. The results showed that Meis1-conditional knockout mice showed cerebral cortex malformation. The mice had a significantly thinner cortex than wildtype mice. At E14.5, BrdU incorporation and Pax6-positive radial glial cells were significantly decreased in the cerebral cortex of Meis1 knockout embryos as compared with wild-type embryos, whereas Tbr2-positive intermediate progenitors and NeuN-positive differentiated neurons were not. Cell death detected by immunostaining with cleaved caspase3 antibody showed no difference in the cortex between knockout and wild-type embryos. Furthermore, knockout of Meis1 in embryo by in utero electroporation showed that cellular migration was disturbed during cortical development. Therefore, Meis1 could play important roles during cortical development through the regulation of cell proliferation and migration in the embryonic cerebral cortex.


Assuntos
Córtex Cerebral , Neurogênese , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Córtex Cerebral/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Meis1/genética , Proteína Meis1/metabolismo , Neurogênese/fisiologia , Gravidez
9.
J Invest Dermatol ; 142(9): 2323-2333.e12, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35240107

RESUMO

We identified a functional SNP in the 3' untranslated region of Pak1 that is responsible for the skin tumor modifier of MSM 1a locus. Candidate SNPs in the 3' untranslated region of Pak1 from resistance strain MSM/Ms were introduced into susceptible strain FVB/N using CRISPR/Cas9. The 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate skin carcinogenesis experiments revealed an SNP (Pak1-3' untranslated region-6C>T: rs31627325) that strongly suppressed skin tumors. Furthermore, MBNL1 bound more strongly to FVB-allele (6C/C) and regulated the transcript length in the 3' untranslated region of Pak1 and tumorigenesis through polyadenylation. Therefore, the alternative polyadenylation of Pak1 is cis-regulated by rs31627325.


Assuntos
Poliadenilação , Neoplasias Cutâneas , Quinases Ativadas por p21 , Regiões 3' não Traduzidas , Animais , Carcinogênese , Camundongos , Camundongos Endogâmicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol , Quinases Ativadas por p21/genética
10.
J Invest Dermatol ; 142(4): 1040-1049.e8, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34592332

RESUMO

Squamous cell carcinomas (SCCs) are one of the most frequent solid cancer types in humans and are derived from stratified epithelial cells found in various organs. SCCs derived from various organs share common important properties, including genomic abnormalities in the tumor suppressor gene p53. There is a carcinogen-induced mouse model of SCC that produces benign papilloma, some of which progress to advanced carcinoma and metastatic SCCs. These SCCs undergo key genetic alterations that are conserved between humans and mice, including alterations in the genomic p53 sequence, and are therefore an ideal system to study the mechanisms of SCC tumorigenesis. Using this SCC model, we show that the PHLDA3 gene, a p53-target gene encoding a protein kinase B repressor, is involved in the suppression of benign and metastatic tumor development. Loss of PHLDA3 induces an epithelial‒mesenchymal transition and can complement p53 loss in the formation of metastatic tumors. We also show that in human patients with SCC, low PHLDA3 expression is associated with a poorer prognosis. Collectively, this study identifies PHLDA3 as an important downstream molecule of p53 involved in SCC development and progression.


Assuntos
Carcinoma de Células Escamosas , Papiloma , Neoplasias Cutâneas , Animais , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Células Epiteliais/metabolismo , Humanos , Camundongos , Proteínas Nucleares , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA