RESUMO
Dietary omega-3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega-3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega-3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega-3 fatty acid-deficient mice as compared to the omega-3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5-trisphosphate-receptor (IP3 -R) was observed in the deficient group. Furthermore, omega-3 fatty acid deficiency reduced the long-term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega-3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.
Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Hipocampo/fisiologia , Potenciação de Longa Duração , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Animais , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Sinapses/efeitos dos fármacos , Sinaptossomos/metabolismoRESUMO
BACKGROUND: Previous reports suggest that omega-3 (n-3) polyunsaturated fatty acids (PUFA) supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. METHODS: We used spontaneously hypertensive rats (SHR). SHR dams were given n-3 PUFA (EPA and DHA)-enriched feed (n-6/n-3 of 1:2.7) during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY) control rats were given control-feed (n-6/n-3 of 7:1). During postnatal days (PND) 25-50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55-60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. RESULTS: n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. CONCLUSIONS: Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms in both sexes.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/dietoterapia , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/administração & dosagem , Neurotransmissores/metabolismo , Caracteres Sexuais , Animais , Animais Recém-Nascidos , Feminino , Humanos , Hipertensão/metabolismo , Masculino , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reforço PsicológicoRESUMO
The spontaneously hypertensive rat (SHR) is widely used as a model of attention-deficit/hyperactivity disorder (ADHD). Deficits in central nicotinic receptors (nAChRs) have been previously observed in SHRs, which is interesting since epidemiological studies have identified an association between smoking and ADHD symptoms in humans. Here, we examine whether nAChR deficits in SHRs compared with Wistar Kyoto rat (WKY) controls are nAChR subtype-specific and whether these deficits correlate with changes at the level of mRNA transcription in specific brain regions. Levels of binding sites (B(max) ) and dissociation constants (K(d)) for nAChRs were determined from saturation curves of high-affinity [³H]epibatidine- and [³H] Methyllycaconitine (MLA) binding to membranes from cortex, striatum, hippocampus and cerebellum. In additional brain regions, nAChRs were examined by autoradiography with [¹²5I]A-85380 and [¹²5I]α-bungarotoxin. Levels of mRNA encoding nAChR subunits were measured using quantitative real-time PCR (qPCR). We showed that the number of α4ß2 nAChR binding sites is lower globally in the SHR brain compared with WKY in the absence of significant differences in mRNA levels, with the exception of lower α4 mRNA in cerebellum of SHR compared with WKY. Furthermore, nAChR deficits were subtype- specific because no strain difference was found in α7 nAChR binding or α7 mRNA levels. Our results suggest that the lower α4ß2 nAChR number in SHR compared with WKY may be a consequence of dysfunctional post-transcriptional regulation of nAChRs.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , RNA Mensageiro/genética , Receptores Nicotínicos/genética , Aconitina/análogos & derivados , Aconitina/metabolismo , Animais , Azetidinas/metabolismo , Química Encefálica/genética , Química Encefálica/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Bungarotoxinas/metabolismo , Técnicas In Vitro , Cinética , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Piridinas/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Nicotínicos/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TermodinâmicaRESUMO
Despite their ban several decades ago, polychlorinated biphenyls (PCBs) still pose a health threat to human beings due to their persistent and accumulative nature and continued presence in the environment. Non-dioxin-like (NDL)-PCBs have earlier been found to have effects on the immune system, including human neutrophil granulocytes. The aim of this study was to investigate the differences between ortho-chlorinated NDL-PCBs with a low or high degree of chlorination in their capability to induce the production of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We used some of the congeners occurring at the highest levels in blood, breast milk and food: PCB 52 representing the low-chlorinated congeners and PCB 180 the high-chlorinated congeners. In addition, the extensively studied PCB 153 was included as a reference compound. ROS production was assessed with the luminol-amplified chemiluminescence and DCF fluorescence assays. The involvement of intracellular signalling mechanisms was investigated using different pharmacological substances. At high concentrations (10-20 µM), PCB 52 induced more ROS than PCB 153 and PCB 180. The role of extracellular signal-regulated kinase (ERK) 1/2 and/or ERK 5 signalling in PCB-induced ROS production was implicated through the reduction in ROS in the presence of the specific inhibitor U0126, whereas reduced ROS production after the use of SB203580 and SP600125 indicated the involvement of the p38 mitogen-activated protein kinase (MAPK) and c-Jun amino-terminal kinase (JNK) pathways, respectively. In addition, the calcineurin inhibitor FK-506, the intracellular calcium chelator BAPTA-AM and the antioxidant vitamin E reduced the levels of ROS. The intracellular signalling mechanisms involved in ROS production in human neutrophil granulocytes appeared to be similar for PCB 52, PCB 153 and PCB 180. Based on the results from the present and previous studies, we conclude that for abundant ortho-chlorinated PCBs found in the blood, low-chlorinated congeners induce higher production of ROS in neutrophil granulocytes than high-chlorinated congeners. This could be relevant during acute exposure scenarios when high concentrations of PCBs are present.
Assuntos
Poluentes Ambientais/toxicidade , Neutrófilos/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Espécies Reativas de Oxigênio/agonistas , Transdução de Sinais/efeitos dos fármacos , Adulto , Antioxidantes/farmacologia , Inibidores de Calcineurina/farmacologia , Quelantes de Cálcio/farmacologia , Poluentes Ambientais/análise , Poluentes Ambientais/sangue , Poluentes Ambientais/química , Feminino , Contaminação de Alimentos , Halogenação , Humanos , Masculino , Leite Humano/química , Estrutura Molecular , Neutrófilos/metabolismo , Noruega , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/sangue , Resíduos de Praguicidas/química , Resíduos de Praguicidas/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/sangue , Bifenilos Policlorados/química , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
The highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures. Analysis of seizure behavior at earlier stages shows that the mature seizure pattern in Syn2KO mice establishes rapidly from the age of â¼2 months, when Syn1KO partial seizures are rare, and Syn1KO generalized seizures are almost absent. The specific behavioral phenotypes of the two strains suggest that the slight differences in structure, function and expression of these highly related proteins could be important factors during seizure generating neural activity.
Assuntos
Convulsões/genética , Convulsões/metabolismo , Sinapsinas/deficiência , Animais , Etologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Convulsões/diagnóstico , Especificidade da Espécie , Sinapsinas/genéticaRESUMO
UNLABELLED: α(2)-adrenoceptors (AR) lower central sympathetic output and peripheral catecholamine release, thereby protecting against sympathetic hyperactivity and hypertension. Norepinephrine re-uptake-transporter effectively (NET) removes norepinephrine from the synapse. Overflow to plasma will therefore not reflect release. Here we tested if inhibition of re-uptake allowed presynaptic α(2)AR release control to be reflected as differences in norepinephrine overflow in anesthetized hypertensive spontaneously hypertensive rats (SHR) and normotensive rats (WKY). We also tested if α(2)AR modulated the experiment-induced epinephrine secretion, and a phenylephrine-induced, α(1)-adrenergic vasoconstriction. Blood pressure was recorded through a femoral artery catheter, and cardiac output by ascending aorta flow. After pre-treatment with NET inhibitor (desipramine), and/or α(2)AR antagonist (yohimbine, L-659,066) or agonist (clonidine, ST-91), we injected phenylephrine. Arterial blood was sampled 15 min later. Plasma catecholamine concentrations were not influenced by phenylephrine, and therefore reflected effects of pre-treatment. Desipramine and α(2)AR antagonist separately had little effect on norepinephrine overflow. Combined, they increased norepinephrine overflow, particularly in SHR. Clonidine, but not ST-91, reduced, and pertussis toxin increased norepinephrine overflow in SHR and epinephrine secretion in both strains. L-659,066 + clonidine (central α(2)AR-stimulation) normalized the high blood pressure, heart rate, and vascular tension in SHR. α(2)AR antagonists reduced phenylephrine-induced vasoconstriction equally in WKY and SHR. CONCLUSIONS: α(2A)AR inhibition increased norepinephrine overflow only when re-uptake was blocked, and then with particular efficacy in SHR, possibly due to their high sympathetic tone. α(2A)AR inhibited epinephrine secretion, particularly in SHR. α(2A)AR supported α(1)AR-induced vasoconstriction equally in the two strains. α(2)AR malfunctions were therefore not detected in SHR under this basal condition.
RESUMO
Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease, and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3':5'-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.
RESUMO
Repeated release of transmitter from presynaptic elements depends on stimulus-induced Ca(2+) influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.1 Hz) were significantly enhanced by both the adenylate cyclase activator forskolin, the priming activator ß-phorbol-12,13-dibutyrate (PDBu) and 4 mM [Ca(2+)](o') whereas during 20 Hz stimulation, the same manipulations reduced the time needed to reach the peak and increased the magnitude of the resulting frequency facilitation. In contrast, paired-pulse facilitations were unchanged in the presence of forskolin, decreased by 4 mM [Ca(2+)](o) and essentially abolished by PDBu. The subsequent delayed response enhancement (DRE) responses, elicited during continuous 20 Hz stimulations and mediated by recruited vesicles, were enhanced by forskolin, essentially unchanged by PDBu and slightly decreased by 4 mM [Ca(2+)](o·) Similar experiments done on slices devoid of the vesicle-associated synapsin I and II proteins indicated that synapsin I/II-induced enhancements of vesicle recruitment were restricted to Ca(2+)-induced frequency facilitations and forskolin-induced enhancements of the early DRE phase, whereas the proteins had minor effects during PDBu-treatment and represented constraints on late Ca(2+)-induced responses. The data indicate that in these glutamatergic synapses, the comparable enhancements of single synaptic responses induced by these biochemical mechanisms can be transformed during prolonged synaptic stimulation into highly distinct short-term plasticity patterns, which are partly dependent on synapsins I/II.