Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
New Phytol ; 238(6): 2345-2362, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960539

RESUMO

Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.


Assuntos
Dióxido de Carbono , Árvores , Florestas , Fotossíntese , Folhas de Planta
2.
New Phytol ; 234(4): 1206-1219, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181903

RESUMO

Solar-induced Chl fluorescence (SIF) offers the potential to curb large uncertainties in the estimation of photosynthesis across biomes and climates, and at different spatiotemporal scales. However, it remains unclear how SIF should be used to mechanistically estimate photosynthesis. In this study, we built a quantitative framework for the estimation of photosynthesis, based on a mechanistic light reaction model with the Chla fluorescence of Photosystem II (SIFPSII ) as an input (MLR-SIF). Utilizing 29 C3 and C4 plant species that are representative of major plant biomes across the globe, we confirmed the validity of this framework at the leaf level. The MLR-SIF model is capable of accurately reproducing photosynthesis for all C3 and C4 species under diverse light, temperature, and CO2 conditions. We further tested the robustness of the MLR-SIF model using Monte Carlo simulations, and found that photosynthesis estimates were much less sensitive to parameter uncertainties relative to the conventional Farquhar, von Caemmerer, Berry (FvCB) model because of the additional independent information contained in SIFPSII . Once inferred from direct observables of SIF, SIFPSII provides 'parameter savings' to the MLR-SIF model, compared to the mechanistically equivalent FvCB model, and thus avoids the uncertainties arising as a result of imperfect model parameterization. Our findings set the stage for future efforts to employ SIF mechanistically to improve photosynthesis estimates across a variety of scales, functional groups, and environmental conditions.


Assuntos
Clorofila , Fotossíntese , Ecossistema , Fluorescência , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
3.
Glob Chang Biol ; 28(15): 4633-4654, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543027

RESUMO

While tropical cyclone regimes are shifting with climate change, the mechanisms underpinning the resistance (ability to withstand disturbance-induced change) and resilience (capacity to return to pre-disturbance reference) of tropical forest litterfall to cyclones remain largely unexplored pantropically. Single-site studies in Australia and Hawaii suggest that litterfall on low-phosphorus (P) soils is more resistant and less resilient to cyclones. We conducted a meta-analysis to investigate the pantropical importance of total soil P in mediating forest litterfall resistance and resilience to 22 tropical cyclones. We evaluated cyclone-induced and post-cyclone litterfall mass (g/m2 /day), and P and nitrogen (N) fluxes (mg/m2 /day) and concentrations (mg/g), all indicators of ecosystem function and essential for nutrient cycling. Across 73 case studies in Australia, Guadeloupe, Hawaii, Mexico, Puerto Rico, and Taiwan, total litterfall mass flux increased from ~2.5 ± 0.3 to 22.5 ± 3 g/m2 /day due to cyclones, with large variation among studies. Litterfall P and N fluxes post-cyclone represented ~5% and 10% of the average annual fluxes, respectively. Post-cyclone leaf litterfall N and P concentrations were 21.6 ± 1.2% and 58.6 ± 2.3% higher than pre-cyclone means. Mixed-effects models determined that soil P negatively moderated the pantropical litterfall resistance to cyclones, with a 100 mg P/kg increase in soil P corresponding to a 32% to 38% decrease in resistance. Based on 33% of the resistance case studies, total litterfall mass flux reached pre-disturbance levels within one-year post-disturbance. A GAMM indicated that soil P, gale wind duration and time post-cyclone jointly moderate the short-term resilience of total litterfall, with the nature of the relationship between resilience and soil P contingent on time and wind duration. Across pantropical forests observed to date, our results indicate that litterfall resistance and resilience in the face of intensifying cyclones will be partially determined by total soil P.


Assuntos
Tempestades Ciclônicas , Fósforo , Ecossistema , Florestas , Solo , Árvores
4.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32789857

RESUMO

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Assuntos
Sequestro de Carbono , Ecossistema , Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática
5.
Glob Chang Biol ; 27(12): 2633-2644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33668074

RESUMO

Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO2 , yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics.


Assuntos
Carbono , Solo , Biomassa , Minerais , Microbiologia do Solo
6.
Glob Chang Biol ; 27(4): 804-822, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33037690

RESUMO

Mechanistic photosynthesis models are at the heart of terrestrial biosphere models (TBMs) simulating the daily, monthly, annual and decadal rhythms of carbon assimilation (A). These models are founded on robust mathematical hypotheses that describe how A responds to changes in light and atmospheric CO2 concentration. Two predominant photosynthesis models are in common usage: Farquhar (FvCB) and Collatz (CBGB). However, a detailed quantitative comparison of these two models has never been undertaken. In this study, we unify the FvCB and CBGB models to a common parameter set and use novel multi-hypothesis methods (that account for both hypothesis and parameter variability) for process-level sensitivity analysis. These models represent three key biological processes: carboxylation, electron transport, triose phosphate use (TPU) and an additional model process: limiting-rate selection. Each of the four processes comprises 1-3 alternative hypotheses giving 12 possible individual models with a total of 14 parameters. To broaden inference, TBM simulations were run and novel, high-resolution photosynthesis measurements were made. We show that parameters associated with carboxylation are the most influential parameters but also reveal the surprising and marked dominance of the limiting-rate selection process (accounting for 57% of the variation in A vs. 22% for carboxylation). The limiting-rate selection assumption proposed by CBGB smooths the transition between limiting rates and always reduces A below the minimum of all potentially limiting rates, by up to 25%, effectively imposing a fourth limitation on A. Evaluation of the CBGB smoothing function in three TBMs demonstrated a reduction in global A by 4%-10%, equivalent to 50%-160% of current annual fossil fuel emissions. This analysis reveals a surprising and previously unquantified influence of a process that has been integral to many TBMs for decades, highlighting the value of multi-hypothesis methods.


Assuntos
Dióxido de Carbono , Modelos Biológicos , Transporte de Elétrons , Fotossíntese , Folhas de Planta
7.
Glob Chang Biol ; 26(1): 287-299, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697014

RESUMO

This commentary summarizes the publication history of Global Change Biology for works on experimental manipulations over the past 25 years and highlights a number of key publications. The retrospective summary is then followed by some thoughts on the future of experimental work as it relates to mechanistic understanding and methodological needs. Experiments for elevated CO2 atmospheres and anticipated warming scenarios which take us beyond historical analogs are suggested as future priorities. Disturbance is also highlighted as a key agent of global change. Because experiments are demanding of both personnel effort and limited fiscal resources, the allocation of experimental investments across Earth's biomes should be done in ecosystems of key importance. Uncertainty analysis and broad community consultation should be used to identify research questions and target biomes that will yield substantial gains in predictive confidence and societal relevance. A full range of methodological approaches covering small to large spatial scales will continue to be justified as a source of mechanistic understanding. Nevertheless, experiments operating at larger spatial scales encompassing organismal, edaphic, and environmental diversity of target ecosystems are favored, as they allow for the assessment of long-term biogeochemical feedbacks enabling a full range of questions to be addressed. Such studies must also include adequate investment in measurements of key interacting variables (e.g., water and nutrient availability and budgets) to enable mechanistic understanding of responses and to interpret context dependency. Integration of ecosystem-scale manipulations with focused process-based manipulations, networks, and large-scale observations will aid more complete understanding of ecosystem responses, context dependence, and the extrapolation of results. From the outset, these studies must be informed by and integrated with ecosystem models that provide quantitative predictions from their embedded mechanistic hypotheses. A true two-way interaction between experiments and models will simultaneously increase the rate and robustness of Global Change research.


Assuntos
Mudança Climática , Ecossistema , Estudos Retrospectivos
8.
Glob Chang Biol ; 26(10): 5928-5941, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32525272

RESUMO

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (Æ¿ = 0.98) and qL (Æ¿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.


Assuntos
Butadienos , Hemiterpenos , Dióxido de Carbono , Transporte de Elétrons , Fotossíntese , Folhas de Planta
9.
New Phytol ; 215(4): 1425-1437, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27870067

RESUMO

Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO2 concentration curves (A/Ci ), and relationships with foliar nitrogen (N) and P content were developed. The relationships between area-based photosynthetic parameters and nutrients were of similar strength for N and P and robust across diverse species and site conditions. The strongest relationship expressed maximum electron transport rate (Jmax ) as a multivariate function of both N and P, and this relationship was improved with the inclusion of independent data on wood density. Models that estimate photosynthesis from foliar N would be improved only modestly by including additional data on foliar P, but doing so may increase the capability of models to predict future conditions in P-limited tropical forests, especially when combined with data on edaphic conditions and other environmental drivers.


Assuntos
Modelos Biológicos , Nitrogênio/análise , Fósforo/análise , Fotossíntese , Folhas de Planta/química , Clima Tropical , Madeira/química , Dióxido de Carbono/metabolismo , Florestas , Panamá , Análise de Regressão , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Árvores/metabolismo
10.
New Phytol ; 215(4): 1370-1386, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643848

RESUMO

The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr-1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.


Assuntos
Dióxido de Carbono/metabolismo , Modelos Biológicos , Fotossíntese , Característica Quantitativa Herdável , Ciclo do Carbono , Internacionalidade , Desenvolvimento Vegetal , Análise de Componente Principal , Estações do Ano , Temperatura
11.
Glob Chang Biol ; 23(8): 3092-3106, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27992952

RESUMO

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.


Assuntos
Ciclo do Carbono , Ecossistema , Pradaria , Dióxido de Carbono , Clima , Wyoming
12.
Glob Chang Biol ; 23(9): 3623-3645, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145053

RESUMO

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2  yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.


Assuntos
Pradaria , Calefação , Poaceae/crescimento & desenvolvimento , Dióxido de Carbono , Solo , Wyoming
14.
New Phytol ; 209(1): 17-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26249015

RESUMO

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/fisiologia , Modelos Teóricos , Árvores/fisiologia , Atmosfera , Austrália , Biodiversidade , Brasil , Clima , Desidratação , Inglaterra , Eucalyptus/efeitos dos fármacos , Florestas , Fósforo/deficiência , Floresta Úmida , Solo , Árvores/efeitos dos fármacos
15.
Glob Chang Biol ; 22(8): 2834-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26946185

RESUMO

The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Eucalyptus/metabolismo , Ciclo do Carbono , Mudança Climática , Florestas , Fotossíntese , Água
16.
New Phytol ; 205(1): 59-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263989

RESUMO

There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction.


Assuntos
Modelos Teóricos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Rizosfera , Carbono/metabolismo , Nitrogênio/metabolismo , Água/metabolismo
17.
New Phytol ; 205(1): 34-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209220

RESUMO

Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.


Assuntos
Camada de Gelo , Raízes de Plantas/fisiologia , Tundra , Regiões Árticas , Atmosfera , Modelos Biológicos
18.
Plant Cell Environ ; 38(9): 1737-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25266403

RESUMO

Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics.


Assuntos
Mudança Climática , Microbiota , Sphagnopsida/microbiologia , Sphagnopsida/fisiologia , Dióxido de Carbono/metabolismo , Ecossistema , Variação Genética , Genômica/métodos , Modelos Biológicos , Solo , Temperatura
19.
New Phytol ; 203(3): 883-99, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844873

RESUMO

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


Assuntos
Ar/análise , Dióxido de Carbono/análise , Carbono/análise , Ecossistema , Florestas , Modelos Teóricos , Árvores/química , Biomassa , Simulação por Computador , Madeira/fisiologia
20.
New Phytol ; 202(3): 803-822, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24467623

RESUMO

We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.


Assuntos
Ar , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Ciclo do Nitrogênio , Atmosfera/química , Biomassa , Carbono/metabolismo , Modelos Biológicos , Nitrogênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA