Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407308

RESUMO

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Endonucleases , Telômero , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Telômero/metabolismo , Telômero/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Reparo do DNA por Junção de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Ligação Proteica , Quebras de DNA de Cadeia Dupla , Fosforilação , DNA/metabolismo , DNA/química , DNA/genética
2.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713472

RESUMO

SUMMARY: The AlphaFold2 neural network model has revolutionized structural biology with unprecedented performance. We demonstrate that by stochastically perturbing the neural network by enabling dropout at inference combined with massive sampling, it is possible to improve the quality of the generated models. We generated ∼6000 models per target compared with 25 default for AlphaFold-Multimer, with v1 and v2 multimer network models, with and without templates, and increased the number of recycles within the network. The method was benchmarked in CASP15, and compared with AlphaFold-Multimer v2 it improved the average DockQ from 0.41 to 0.55 using identical input and was ranked at the very top in the protein assembly category when compared with all other groups participating in CASP15. The simplicity of the method should facilitate the adaptation by the field, and the method should be useful for anyone interested in modeling multimeric structures, alternate conformations, or flexible structures. AVAILABILITY AND IMPLEMENTATION: AFsample is available online at http://wallnerlab.org/AFsample.


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/química , Conformação Proteica , Benchmarking
3.
Nucleic Acids Res ; 50(6): 3505-3522, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35244724

RESUMO

Despite MYC dysregulation in most human cancers, strategies to target this potent oncogenic driver remain an urgent unmet need. Recent evidence shows the PP1 phosphatase and its regulatory subunit PNUTS control MYC phosphorylation, chromatin occupancy, and stability, however the molecular basis remains unclear. Here we demonstrate that MYC interacts directly with PNUTS through the MYC homology Box 0 (MB0), a highly conserved region recently shown to be important for MYC oncogenic activity. By NMR we identified a distinct peptide motif within MB0 that interacts with PNUTS residues 1-148, a functional unit, here termed PNUTS amino-terminal domain (PAD). Using NMR spectroscopy we determined the solution structure of PAD, and characterised its MYC-binding patch. Point mutations of residues at the MYC-PNUTS interface significantly weaken their interaction both in vitro and in vivo, leading to elevated MYC phosphorylation. These data demonstrate that the MB0 region of MYC directly interacts with the PAD of PNUTS, which provides new insight into the control mechanisms of MYC as a regulator of gene transcription and a pervasive cancer driver.


Assuntos
Cromatina , Proteínas Nucleares , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/genética
4.
Biophys J ; 122(2): 408-418, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36474441

RESUMO

In this work, we used small-angle x-ray and neutron scattering to reveal the shape of the protein-DNA complex of the Pseudomonas aeruginosa transcriptional regulator MexR, a member of the multiple antibiotics resistance regulator (MarR) family, when bound to one of its native DNA binding sites. Several MarR-like proteins, including MexR, repress the expression of efflux pump proteins by binding to DNA on regulatory sites overlapping with promoter regions. When expressed, efflux proteins self-assemble to form multiprotein complexes and actively expel highly toxic compounds out of the host organism. The mutational pressure on efflux-regulating MarR family proteins is high since deficient DNA binding leads to constitutive expression of efflux pumps and thereby supports acquired multidrug resistance. Understanding the functional outcome of such mutations and their effects on DNA binding has been hampered by the scarcity of structural and dynamic characterization of both free and DNA-bound MarR proteins. Here, we show how combined neutron and x-ray small-angle scattering of both states in solution support a conformational selection model that enhances MexR asymmetry in binding to one of its promoter-overlapping DNA binding sites.


Assuntos
Proteínas de Bactérias , DNA , Proteínas de Bactérias/química , Raios X , DNA/genética , DNA/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Pseudomonas aeruginosa
5.
Proteins ; 91(12): 1734-1746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548092

RESUMO

AlphaFold2 has revolutionized structure prediction by achieving high accuracy comparable to experimentally determined structures. However, there is still room for improvement, especially for challenging cases like multimers. A key to the success of AlphaFold is its ability to assess and rank its own predictions. Our basic idea for the Wallner group in CASP15 was to exploit this excellent scoring function in AlphaFold by massive sampling. To achieve this goal, we conducted AlphaFold runs using six different settings, using templates, without templates, and with an increased number of recycles for both multimer v1 and v2 weights. In all instances, we enabled dropout layers during inference, allowing for sampling of uncertainty and enhancing the diversity of the generated models. In total, 274 289 models were generated for the 38 targets in CASP15, with a median of 4810 models per target. Of these 38 targets, 10 were high quality, 11 were medium quality, 11 were acceptable, and only 6 were incorrect. The improvement over the baseline method, NBIS-AF2-multimer, is substantial, with the mean DockQ increasing from 0.43 to 0.56, with several targets showing a DockQ score increase of +0.6 units. Remarkable, considering Wallner and NBIS-AF2-multimer were using identical input data. The success can be attributed to the diversified sampling using dropout with different settings and, in particular, the use of multimer v1, which is much more susceptible to sampling compared with v2. The method is available here: http://wallnerlab.org/AFsample/.


Assuntos
Furilfuramida , Incerteza
6.
Bioinformatics ; 38(12): 3209-3215, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35575349

RESUMO

MOTIVATION: Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to experimentally determine in structural details of. As such, many computational methods have been developed to aid in peptide-protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently refines coarse peptide-protein models into sub-Ångström precision using Monte-Carlo simulations and statistical potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural networks used for protein model quality assessment. RESULTS: Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from FlexPepDock refinement starting from thousands of peptide-protein complexes generated by a wide variety of docking schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models created, and on an independent benchmark on 109 peptide-protein complexes its inclusion results in an increase in the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better from 14.8% to 26.1%. AVAILABILITY AND IMPLEMENTATION: InterPepScore is available online at http://wallnerlab.org/InterPepScore. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Proteínas/química , Peptídeos/química , Simulação por Computador , Método de Monte Carlo , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 117(43): 27016-27021, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051293

RESUMO

The opening and closing of voltage-gated ion channels are regulated by voltage sensors coupled to a gate that controls the ion flux across the cellular membrane. Modulation of any part of gating constitutes an entry point for pharmacologically regulating channel function. Here, we report on the discovery of a large family of warfarin-like compounds that open the two voltage-gated type 1 potassium (KV1) channels KV1.5 and Shaker, but not the related KV2-, KV4-, or KV7-type channels. These negatively charged compounds bind in the open state to positively charged arginines and lysines between the intracellular ends of the voltage-sensor domains and the pore domain. This mechanism of action resembles that of endogenous channel-opening lipids and opens up an avenue for the development of ion-channel modulators.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.5/agonistas , Superfamília Shaker de Canais de Potássio/agonistas , Animais , Ensaios de Triagem em Larga Escala , Canal de Potássio Kv1.5/metabolismo , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
8.
Bioinformatics ; 36(10): 3266-3267, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049311

RESUMO

MOTIVATION: In the past few years, drug discovery processes have been relying more and more on computational methods to sift out the most promising molecules before time and resources are spent to test them in experimental settings. Whenever the protein target of a given disease is not known, it becomes fundamental to have accurate methods for ligand-based virtual screening, which compares known active molecules against vast libraries of candidate compounds. Recently, 3D-based similarity methods have been developed that are capable of scaffold hopping and to superimpose matching molecules. RESULTS: Here, we present InterLig, a new method for the comparison and superposition of small molecules using topologically independent alignments of atoms. We test InterLig on a standard benchmark and show that it compares favorably to the best currently available 3D methods. AVAILABILITY AND IMPLEMENTATION: The program is available from http://wallnerlab.org/InterLig. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Descoberta de Drogas , Software , Ligantes
9.
Bioinformatics ; 36(8): 2458-2465, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917413

RESUMO

MOTIVATION: Interactions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming and difficult because of the inherent flexibility of the peptide ligand. Although several prediction-methods exist, most are limited in performance or availability. RESULTS: InterPep2 is a freely available method for predicting the structure of peptide-protein interactions. Improved performance is obtained by using templates from both peptide-protein and regular protein-protein interactions, and by a random forest trained to predict the DockQ-score for a given template using sequence and structural features. When tested on 252 bound peptide-protein complexes from structures deposited after the complexes used in the construction of the training and templates sets of InterPep2, InterPep2-Refined correctly positioned 67 peptides within 4.0 Å LRMSD among top10, similar to another state-of-the-art template-based method which positioned 54 peptides correctly. However, InterPep2 displays a superior ability to evaluate the quality of its own predictions. On a previously established set of 27 non-redundant unbound-to-bound peptide-protein complexes, InterPep2 performs on-par with leading methods. The extended InterPep2-Refined protocol managed to correctly model 15 of these complexes within 4.0 Å LRMSD among top10, without using templates from homologs. In addition, combining the template-based predictions from InterPep2 with ab initio predictions from PIPER-FlexPepDock resulted in 22% more near-native predictions compared to the best single method (22 versus 18). AVAILABILITY AND IMPLEMENTATION: The program is available from: http://wallnerlab.org/InterPep2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos , Proteínas
10.
Proteins ; 87(12): 1361-1377, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31265154

RESUMO

Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part of most protein folding pipelines and important for reliable identification of the best models when multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in the field of estimation of model accuracy (EMA) as seen from the progress of the most successful methods in CASP13. We show small but clear progress, that is, several methods perform better than the best methods from CASP12 when tested on CASP13 EMA targets. Some progress is driven by applying deep learning and residue-residue contacts to model accuracy prediction. We show that the best EMA methods select better models than the best servers in CASP13, but that there exists a great potential to improve this further. Also, according to the evaluation criteria based on local similarities, such as lDDT and CAD, it is now clear that single model accuracy methods perform relatively better than consensus-based methods.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
11.
Bioinformatics ; 34(17): i787-i794, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423106

RESUMO

Motivation: Protein-protein interactions (PPI) are essential for the function of the cellular machinery. The rapid growth of protein-protein complexes with known 3D structures offers a unique opportunity to study PPI to gain crucial insights into protein function and the causes of many diseases. In particular, it would be extremely useful to compare interaction surfaces of monomers, as this would enable the pinpointing of potential interaction surfaces based solely on the monomer structure, without the need to predict the complete complex structure. While there are many structural alignment algorithms for individual proteins, very few have been developed for protein interfaces, and none that can align only the interface residues to other interfaces or surfaces of interacting monomer subunits in a topology independent (non-sequential) manner. Results: We present InterComp, a method for topology and sequence-order independent structural comparisons. The method is general and can be applied to various structural comparison applications. By representing residues as independent points in space rather than as a sequence of residues, InterComp can be applied to a wide range of problems including interface-surface comparisons and interface-interface comparisons. We demonstrate a use-case by applying InterComp to find similar protein interfaces on the surface of proteins. We show that InterComp pinpoints the correct interface for almost half of the targets (283 of 586) when considering the top 10 hits, and for 24% of the top 1, even when no templates can be found with regular sequence-order dependent structural alignment methods. Availability and implementation: The source code and the datasets are available at: http://wallnerlab.org/InterComp. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas/química , Algoritmos , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software
12.
Proteins ; 86(6): 654-663, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524250

RESUMO

Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates.


Assuntos
Modelos Moleculares , Proteínas/química , Algoritmos , Bases de Dados de Proteínas , Aprendizado de Máquina , Conformação Proteica , Software , Relação Estrutura-Atividade
13.
Proteins ; 86 Suppl 1: 361-373, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28975666

RESUMO

Methods to reliably estimate the quality of 3D models of proteins are essential drivers for the wide adoption and serious acceptance of protein structure predictions by life scientists. In this article, the most successful groups in CASP12 describe their latest methods for estimates of model accuracy (EMA). We show that pure single model accuracy estimation methods have shown clear progress since CASP11; the 3 top methods (MESHI, ProQ3, SVMQA) all perform better than the top method of CASP11 (ProQ2). Although the pure single model accuracy estimation methods outperform quasi-single (ModFOLD6 variations) and consensus methods (Pcons, ModFOLDclust2, Pcomb-domain, and Wallner) in model selection, they are still not as good as those methods in absolute model quality estimation and predictions of local quality. Finally, we show that when using contact-based model quality measures (CAD, lDDT) the single model quality methods perform relatively better.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Bases de Dados de Proteínas , Humanos , Alinhamento de Sequência , Análise de Sequência de Proteína
14.
Bioinformatics ; 33(10): 1578-1580, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28052925

RESUMO

SUMMARY: Protein quality assessment is a long-standing problem in bioinformatics. For more than a decade we have developed state-of-art predictors by carefully selecting and optimising inputs to a machine learning method. The correlation has increased from 0.60 in ProQ to 0.81 in ProQ2 and 0.85 in ProQ3 mainly by adding a large set of carefully tuned descriptions of a protein. Here, we show that a substantial improvement can be obtained using exactly the same inputs as in ProQ2 or ProQ3 but replacing the support vector machine by a deep neural network. This improves the Pearson correlation to 0.90 (0.85 using ProQ2 input features). AVAILABILITY AND IMPLEMENTATION: ProQ3D is freely available both as a webserver and a stand-alone program at http://proq3.bioinfo.se/. CONTACT: arne@bioinfo.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Conformação Proteica , Software , Máquina de Vetores de Suporte , Modelos Moleculares
15.
Proteins ; 85(6): 1159-1170, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263438

RESUMO

Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Software , Máquina de Vetores de Suporte , Sequência de Aminoácidos , Benchmarking , Internet , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína
16.
Bioinformatics ; 32(12): i262-i270, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307625

RESUMO

MOTIVATION: Protein-protein interactions are a key in virtually all biological processes. For a detailed understanding of the biological processes, the structure of the protein complex is essential. Given the current experimental techniques for structure determination, the vast majority of all protein complexes will never be solved by experimental techniques. In lack of experimental data, computational docking methods can be used to predict the structure of the protein complex. A common strategy is to generate many alternative docking solutions (atomic models) and then use a scoring function to select the best. The success of the computational docking technique is, to a large degree, dependent on the ability of the scoring function to accurately rank and score the many alternative docking models. RESULTS: Here, we present ProQDock, a scoring function that predicts the absolute quality of docking model measured by a novel protein docking quality score (DockQ). ProQDock uses support vector machines trained to predict the quality of protein docking models using features that can be calculated from the docking model itself. By combining different types of features describing both the protein-protein interface and the overall physical chemistry, it was possible to improve the correlation with DockQ from 0.25 for the best individual feature (electrostatic complementarity) to 0.49 for the final version of ProQDock. ProQDock performed better than the state-of-the-art methods ZRANK and ZRANK2 in terms of correlations, ranking and finding correct models on an independent test set. Finally, we also demonstrate that it is possible to combine ProQDock with ZRANK and ZRANK2 to improve performance even further. AVAILABILITY AND IMPLEMENTATION: http://bioinfo.ifm.liu.se/ProQDock CONTACT: bjornw@ifm.liu.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas
17.
Bioinformatics ; 32(9): 1411-3, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733453

RESUMO

MOTIVATION: Model quality assessment programs are used to predict the quality of modeled protein structures. They can be divided into two groups depending on the information they are using: ensemble methods using consensus of many alternative models and methods only using a single model to do its prediction. The consensus methods excel in achieving high correlations between prediction and true quality measures. However, they frequently fail to pick out the best possible model, nor can they be used to generate and score new structures. Single-model methods on the other hand do not have these inherent shortcomings and can be used both to sample new structures and to improve existing consensus methods. RESULTS: Here, we present an implementation of the ProQ2 program to estimate both local and global model accuracy as part of the Rosetta modeling suite. The current implementation does not only make it possible to run large batch runs locally, but it also opens up a whole new arena for conformational sampling using machine learned scoring functions and to incorporate model accuracy estimation in to various existing modeling schemes. ProQ2 participated in CASP11 and results from CASP11 are used to benchmark the current implementation. Based on results from CASP11 and CAMEO-QE, a continuous benchmark of quality estimation methods, it is clear that ProQ2 is the single-model method that performs best in both local and global model accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/bjornwallner/ProQ_scripts CONTACT: bjornw@ifm.liu.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Moleculares , Proteínas/química , Conformação Proteica
18.
J Comput Aided Mol Des ; 31(5): 453-466, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28365882

RESUMO

The focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order transitioning code embedded in the amino acid sequences of IDPs/IDPRs. Disordered proteins are characterized by an enormous amount of structural plasticity which makes them promiscuous in binding to different partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling partially folded molten globules. Also, their involvement in several deadly human diseases (e.g. cancer, cardiovascular and neurodegenerative diseases) makes them attractive drug targets, and important for a biochemical understanding of the disease(s). The study of the structural ensemble of IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner, an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-order transition are called protean residues, generally found in short contiguous stretches and the first step in understanding the modus operandi of an IDP/IDPR would be to predict these residues. There are a few available methods which predict these protean segments from their amino acid sequences; however, their performance reported in the literature leaves clear room for improvement. With this background, the current study presents 'Proteus', a random forest classifier that predicts the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential partner protein. The prediction is based on features that can be calculated using the amino acid sequence alone. Proteus compares favorably with existing methods predicting twice as many true positives as the second best method (55 vs. 27%) with a much higher precision on an independent data set. The current study also sheds some light on a possible 'disorder-to-order' transitioning consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Software , Sequência de Aminoácidos , Biologia Computacional , Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/classificação , Funções Verossimilhança , Dobramento de Proteína
19.
Biochim Biophys Acta ; 1849(5): 469-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24933113

RESUMO

The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.


Assuntos
Neoplasias/genética , Mapas de Interação de Proteínas/genética , Proteoma , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Humanos , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/metabolismo
20.
Bioinformatics ; 30(15): 2221-3, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24713439

RESUMO

SUMMARY: Model Quality Assessment Programs (MQAPs) are used to predict the quality of modeled protein structures. These usually use two approaches: methods using consensus of many alternative models and methods requiring only a single model to do its prediction. The consensus methods are useful to improve overall accuracy; however, they frequently fail to pick out the best possible model and cannot be used to generate and score new structures. Single-model methods, on the other hand, do not have these inherent shortcomings and can be used to both sample new structures and improve existing consensus methods. Here, we present ProQM-resample, a membrane protein-specific single-model MQAP, that couples side-chain resampling with MQAP rescoring by ProQM to improve model selection. The side-chain resampling is able to improve side-chain packing for 96% of all models, and improve model selection by 24% as measured by the sum of the Z-score for the first-ranked model (from 25.0 to 31.1), even better than the state-of-the-art consensus method Pcons. The improved model selection can be attributed to the improved side-chain quality, which enables the MQAP to rescue good backbone models with poor side-chain packing. AVAILABILITY AND IMPLEMENTATION: http://proqm.wallnerlab.org/download/. CONTACT: bjornw@ifm.liu.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Proteínas de Membrana/química , Modelos Moleculares , Benchmarking , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA