RESUMO
Crop growth and phenology are driven by seasonal changes in environmental variables, with temperature as one important factor. However, knowledge about genotype-specific temperature response and its influence on phenology is limited. Such information is fundamental to improve crop models and adapt selection strategies. We measured the increase in height of 352 European winter wheat varieties in 4 years to quantify phenology, and fitted an asymptotic temperature response model. The model used hourly fluctuations in temperature to parameterize the base temperature (Tmin), the temperature optimum (rmax), and the steepness (lrc) of growth responses. Our results show that higher Tmin and lrc relate to an earlier start and end of stem elongation. A higher rmax relates to an increased final height. Both final height and rmax decreased for varieties originating from the continental east of Europe towards the maritime west. A genome-wide association study (GWAS) indicated a quantitative inheritance and a large degree of independence among loci. Nevertheless, genomic prediction accuracies (GBLUPs) for Tmin and lrc were low (r≤0.32) compared with other traits (r≥0.59). As well as known, major genes related to vernalization, photoperiod, or dwarfing, the GWAS indicated additional, as yet unknown loci that dominate the temperature response.
Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Temperatura , Locos de Características Quantitativas , Melhoramento Vegetal , FenótipoRESUMO
Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating photosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean (Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR (ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic predictions for new environments in four trials under different growing conditions. Investigating genetic control over photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In conclusion, photosynthetic screening facilitates and accelerates selection for high yield potential.
Assuntos
Luz , Folhas de Planta , Folhas de Planta/fisiologia , Melhoramento Vegetal , Fotossíntese/fisiologia , Cloroplastos , ClorofilaRESUMO
KEY MESSAGE: Genotype-by-environment interactions of secondary traits based on high-throughput field phenotyping are less complex than those of target traits, allowing for a phenomic selection in unreplicated early generation trials. Traditionally, breeders' selection decisions in early generations are largely based on visual observations in the field. With the advent of affordable genome sequencing and high-throughput phenotyping technologies, enhancing breeders' ratings with such information became attractive. In this research, it is hypothesized that G[Formula: see text]E interactions of secondary traits (i.e., growth dynamics' traits) are less complex than those of related target traits (e.g., yield). Thus, phenomic selection (PS) may allow selecting for genotypes with beneficial response-pattern in a defined population of environments. A set of 45 winter wheat varieties was grown at 5 year-sites and analyzed with linear and factor-analytic (FA) mixed models to estimate G[Formula: see text]E interactions of secondary and target traits. The dynamic development of drone-derived plant height, leaf area and tiller density estimations was used to estimate the timing of key stages, quantities at defined time points and temperature dose-response curve parameters. Most of these secondary traits and grain protein content showed little G[Formula: see text]E interactions. In contrast, the modeling of G[Formula: see text]E for yield required a FA model with two factors. A trained PS model predicted overall yield performance, yield stability and grain protein content with correlations of 0.43, 0.30 and 0.34. While these accuracies are modest and do not outperform well-trained GS models, PS additionally provided insights into the physiological basis of target traits. An ideotype was identified that potentially avoids the negative pleiotropic effects between yield and protein content.
Assuntos
Proteínas de Grãos , Fenômica , Triticum/genética , Proteínas de Grãos/metabolismo , Melhoramento Vegetal , Grão Comestível/genética , Seleção Genética , Fenótipo , GenótipoRESUMO
Plants have evolved to grow under prominently fluctuating environmental conditions. In experiments under controlled conditions, temperature is often set to artificial, binary regimes with constant values at day and at night. This study investigated how such a diel (24 hr) temperature regime affects leaf growth, carbohydrate metabolism and gene expression, compared to a temperature regime with a field-like gradual increase and decline throughout 24 hr. Soybean (Glycine max) was grown under two contrasting diel temperature treatments. Leaf growth was measured in high temporal resolution. Periodical measurements were performed of carbohydrate concentrations, carbon isotopes as well as the transcriptome by RNA sequencing. Leaf growth activity peaked at different times under the two treatments, which cannot be explained intuitively. Under field-like temperature conditions, leaf growth followed temperature and peaked in the afternoon, whereas in the binary temperature regime, growth increased at night and decreased during daytime. Differential gene expression data suggest that a synchronization of cell division activity seems to be evoked in the binary temperature regime. Overall, the results show that the coordination of a wide range of metabolic processes is markedly affected by the diel variation of temperature, which emphasizes the importance of realistic environmental settings in controlled condition experiments.
Assuntos
Glycine max/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Metabolismo dos Carboidratos , Isótopos de Carbono/análise , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Células Vegetais , Folhas de Planta/citologia , Proteínas de Plantas/genética , Glycine max/citologia , Amido/metabolismo , Açúcares/metabolismo , Suíça , Temperatura , Pressão de VaporRESUMO
In wheat, temperature affects the timing and intensity of stem elongation. Genetic variation for this process is therefore important for adaptation. This study investigates the genetic response to temperature fluctuations during stem elongation and its relationship to phenology and height. Canopy height of 315 wheat genotypes (GABI wheat panel) was scanned twice weekly in the field phenotyping platform (FIP) of ETH Zurich using a LIDAR. Temperature response was modelled using linear regressions between stem elongation and mean temperature in each measurement interval. This led to a temperature-responsive (slope) and a temperature-irresponsive (intercept) component. The temperature response was highly heritable (H2=0.81) and positively related to a later start and end of stem elongation as well as final height. Genome-wide association mapping revealed three temperature-responsive and four temperature-irresponsive quantitative trait loci (QTLs). Furthermore, putative candidate genes for temperature-responsive QTLs were frequently related to the flowering pathway in Arabidopsis thaliana, whereas temperature-irresponsive QTLs corresponded to growth and reduced height genes. In combination with Rht and Ppd alleles, these loci, together with the loci for the timing of stem elongation, accounted for 71% of the variability in height. This demonstrates how high-throughput field phenotyping combined with environmental covariates can contribute to a smarter selection of climate-resilient crops.
Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Fenótipo , Temperatura , Triticum/genéticaRESUMO
Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.
Assuntos
Biomassa , Lactonas/metabolismo , Fosfatos/deficiência , Solo/química , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genótipo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Micorrizas/fisiologia , Petunia/genética , Petunia/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regulação para CimaRESUMO
Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength.
Assuntos
Meristema/crescimento & desenvolvimento , Solo/química , Triticum/crescimento & desenvolvimento , Fenômenos Biomecânicos , Variação Genética , Genótipo , Processamento de Imagem Assistida por Computador , Modelos Lineares , Meristema/anatomia & histologia , Meristema/genética , Triticum/embriologiaRESUMO
Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Ascomicetos/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Folhas de Planta , Característica Quantitativa Herdável , Triticum/microbiologiaRESUMO
Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These differences could be due to both intrinsic control mechanisms and different sensitivities to environmental factors.
Assuntos
Ritmo Circadiano , Glycine max/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Tomografia Computadorizada por Raios X/métodosRESUMO
Leaf growth in monocot crops such as wheat and barley largely follows the daily temperature course, particularly under cold but humid springtime field conditions. Knowledge of the temperature response of leaf extension, particularly variations close to the thermal limit of growth, helps define physiological growth constraints and breeding-related genotypic differences among cultivars. Here, we present a novel method, called 'Leaf Length Tracker' (LLT), suitable for measuring leaf elongation rates (LERs) of cereals and other grasses with high precision and high temporal resolution under field conditions. The method is based on image sequence analysis, using a marker tracking approach to calculate LERs. We applied the LLT to several varieties of winter wheat (Triticum aestivum), summer barley (Hordeum vulgare), and ryegrass (Lolium perenne), grown in the field and in growth cabinets under controlled conditions. LLT is easy to use and we demonstrate its reliability and precision under changing weather conditions that include temperature, wind, and rain. We found that leaf growth stopped at a base temperature of 0°C for all studied species and we detected significant genotype-specific differences in LER with rising temperature. The data obtained were statistically robust and were reproducible in the tested environments. Using LLT, we were able to detect subtle differences (sub-millimeter) in leaf growth patterns. This method will allow the collection of leaf growth data in a wide range of future field experiments on different graminoid species or varieties under varying environmental or treatment conditions.
Assuntos
Hordeum/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Lolium/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Triticum/crescimento & desenvolvimento , Hordeum/anatomia & histologia , Lolium/anatomia & histologia , Fatores de Tempo , Triticum/anatomia & histologiaRESUMO
Leaf growth is controlled by various internal and external factors. Leaves of dicotyledonous plants show pronounced diel (24 h) growth patterns that are controlled by the circadian clock. To date, it is still uncertain whether diel leaf growth patterns remain constant throughout the development of a plant. In this study, we followed growth from the primary leaves to leaflets of the seventh trifoliate leaf of soybean (Glycine max) on the same plants with a recently developed imaging-based method under controlled conditions and at a high temporal resolution. We found that all leaflets displayed a consistent diel growth pattern with maximum growth towards the end of the night. In some leaves, growth maxima occurred somewhat later - at dawn - as long as the leaves were still in a very early developmental stage. Yet, overall, diel growth patterns of leaves from different positions within the canopy were highly synchronous. Therefore, the diel growth pattern of any leaf at a given point in time is representative for the overall diel growth pattern of the plant leaf canopy and a deviation from the normal diel growth pattern can indicate that the plant is currently facing stress.
Assuntos
Glycine max/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Relógios Circadianos , Fenótipo , Folhas de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Glycine max/fisiologiaRESUMO
The formation and development of belowground organs is difficult to study. X-ray computed tomography (CT) provides the possibility to analyse and interpret subtle volumetric changes of belowground organs such as tubers, storage roots and nodules. Here, we report on the establishment of a method based on a voxel dimension of 240 µm and precision (standard deviation) of 30 µL that allows interpreting growth differences among potato tubers happening within 3 h. Plants were not stressed by the application of X-ray radiation, which was shown both by morphological comparison with control plants and by analysis of lipid peroxidation as a measure of oxidative stress. Diel (24 h) tuber growth fluctuations of three potato genotypes were monitored in soil-filled pots of 10 L. In contrast to the results from previous reports, most tubers grew at similar rates during day and night. Tuber growth was not related to the developmental stage of plants and tubers. Pronounced differences were observed between average growth rates in different tubers within a plant. These results are discussed in the context of restrictions of past methods to study tuber growth and in the context of their potential for the characterization of the formation and development of other belowground plant organs.
Assuntos
Solanum tuberosum/crescimento & desenvolvimento , Estresse Oxidativo , Tubérculos/anatomia & histologia , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/anatomia & histologia , Tomografia Computadorizada por Raios X/métodosRESUMO
Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall.
Assuntos
Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento , Água/metabolismo , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Triticum/genética , Triticum/metabolismoRESUMO
BACKGROUND: Sainfoin (Onobrychis viciifolia) is a promising alternative forage plant of good quality, moderate nutrient demand and a high content of polyphenolic compounds. Its poor adoption is caused by the limited availability of well performing varieties. Sainfoin is characterised as tetraploid and mainly outcrossing, but the extent of self-fertilisation and its consequences was not investigated so far. This study aimed at assessing the rate of self-fertilisation in sainfoin under different pollination regimes and at analysing the consequences on plant performance in order to assist future breeding efforts. METHODS: The self-fertilisation rate was assessed in three sainfoin populations with artificially directed pollination (ADP) and in three populations with non-directed pollination (NDP). Dominant SRAP (sequence-related amplified polymorphism) and codominant SSR (simple sequence repeats) markers were used to detect self-fertilisation in sainfoin for the first time based on molecular marker data. RESULTS: High rates of self-fertilisation of up to 64.8% were observed for ADP populations in contrast to only up to 3.9% for NDP populations. Self-fertilisation in ADP populations led to a reduction in plant height, plant vigour and, most severely, for seed yield. CONCLUSIONS: Although sainfoin is predominantly outcrossing, self-fertilisation can occur to a high degree under conditions of limited pollen availability. These results will influence future breeding efforts because precautions have to be taken when crossing breeding material. The resulting inbreeding depression can lead to reduced performance in self-fertilised offspring. Nevertheless the possibility of self-fertilisation also offers new ways for hybrid breeding based on the development of homogenous inbred lines.
Assuntos
Cruzamento , Fabaceae/fisiologia , Autofertilização/fisiologia , Análise de Variância , Fabaceae/genética , Marcadores Genéticos , Repetições de Microssatélites/genética , Fenótipo , Polinização/fisiologia , Polimorfismo Genético , Análise de Componente PrincipalAssuntos
Conservação dos Recursos Naturais , Tecnologia da Informação , Agricultura , Animais , Humanos , InternetRESUMO
This study investigated the performance of cocoa trees within an irrigated cocoa plantation situated in the semi-arid region of Bahia, Brazil. Two treatments were compared: "full sun," where cocoa trees were not shaded, and "shade," where trees were covered with a shading net absorbing 30 % of the radiation. The number of leaves and the leaf area index (LAI) were assessed using destructive method on 8 trees. In addition, new flushing of leaves, categorized into four flushing stages, were assessed visually on a weekly basis during two years. The variation of the stem diameter was measured using dendrometer sensors (n = 12 trees). Yield parameters like dry bean yield and number of fruits (healthy and aborted) were assessed on 40 trees per treatment. Both treatments, performed well in the semi-arid region. Generative parameters, such as dry bean yield (±2,000 kg/ha), fruit healthy and abortion rate per plot, were unaffected by full sun and shade treatments. The treatments showed high fruit abortion rates of (±60 %), showing that there's still much room for yield optimization. Additionally, stem diameter of the trees showed a significant reduction of the stem growth (daily increase of stem diameter) and maximum daily shrinkage (daily variation of stem diameter) during the flushing of new leaves. This implies that the emergence of new leaves significantly influences stem growth, consequently affecting the fruits which are growing on the stem. This assumption was corroborated by the significantly increased fruit abortion rate during the flushing of new leaves (stages 1 & 2). These findings highlight the potential of dendrometers to quantify this effect what can be used in future to optimize management practices. By doing so, more effective strategies can be developed to enhance cocoa yield and overall productivity in semi-arid regions.
RESUMO
Predicting plant development, a longstanding goal in plant physiology, involves 2 interwoven components: continuous growth and the progression of growth stages (phenology). Current models for winter wheat and soybean assume species-level growth responses to temperature. We challenge this assumption, suggesting that cultivar-specific temperature responses substantially affect phenology. To investigate, we collected field-based growth and phenology data in winter wheat and soybean over multiple years. We used diverse models, from linear to neural networks, to assess growth responses to temperature at various trait and covariate levels. Cultivar-specific nonlinear models best explained phenology-related cultivar-environment interactions. With cultivar-specific models, additional relations to other stressors than temperature were found. The availability of the presented field phenotyping tools allows incorporating cultivar-specific temperature response functions in future plant physiology studies, which will deepen our understanding of key factors that influence plant development. Consequently, this work has implications for crop breeding and cultivation under adverse climatic conditions.
RESUMO
Canopy temperature (CT) is often interpreted as representing leaf activity traits such as photosynthetic rates, gas exchange rates, or stomatal conductance. This interpretation is based on the observation that leaf activity traits correlate with transpiration which affects leaf temperature. Accordingly, CT measurements may provide a basis for high throughput assessments of the productivity of wheat canopies during early grain filling, which would allow distinguishing functional from dysfunctional stay-green. However, whereas the usefulness of CT as a fast surrogate measure of sustained vigor under soil drying is well established, its potential to quantify leaf activity traits under high-yielding conditions is less clear. To better understand sensitivity limits of CT measurements under high yielding conditions, we generated within-genotype variability in stay-green functionality by means of differential short-term pre-anthesis canopy shading that modified the sink:source balance. We quantified the effects of these modifications on stay-green properties through a combination of gold standard physiological measurements of leaf activity and newly developed methods for organ-level senescence monitoring based on timeseries of high-resolution imagery and deep-learning-based semantic image segmentation. In parallel, we monitored CT by means of a pole-mounted thermal camera that delivered continuous, ultra-high temporal resolution CT data. Our results show that differences in stay-green functionality translate into measurable differences in CT in the absence of major confounding factors. Differences amounted to approximately 0.8°C and 1.5°C for a very high-yielding source-limited genotype, and a medium-yielding sink-limited genotype, respectively. The gradual nature of the effects of shading on CT during the stay-green phase underscore the importance of a high measurement frequency and a time-integrated analysis of CT, whilst modest effect sizes confirm the importance of restricting screenings to a limited range of morphological and phenological diversity.
RESUMO
Site-specific crop management in heterogeneous fields has emerged as a promising avenue towards increasing agricultural productivity whilst safeguarding the environment. However, successful implementation is hampered by insufficient availability of accurate spatial information on crop growth, vigor, and health status at large scales. Challenges persist particularly in interpreting remote sensing signals within commercial crop production due to the variability in canopy appearance resulting from diverse factors. Recently, high-resolution imagery captured from unmanned aerial vehicles has shown significant potential for calibrating and validating methods for remote sensing signal interpretation. We present a comprehensive multi-scale image dataset encompassing 35,000 high-resolution aerial RGB images, ground-based imagery, and Sentinel-2 satellite data from nine on-farm wheat fields in Switzerland. We provide geo-referenced orthomosaics, digital elevation models, and shapefiles, enabling detailed analysis of field characteristics across the growing season. In combination with rich meta data such as detailed records of crop husbandry, crop phenology, and yield maps, this data set enables key challenges in remote sensing-based trait estimation and precision agriculture to be addressed.
Assuntos
Tecnologia de Sensoriamento Remoto , Triticum , Triticum/crescimento & desenvolvimento , Suíça , Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Imagens de Satélites , Estações do Ano , Calibragem , Dispositivos Aéreos não TripuladosRESUMO
Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture.