Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(20): 10825-10833, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700247

RESUMO

A key knowledge gap in the emerging field of nanofluidics concerns how the ionic composition and ion-transport properties of a nanoconfined solution differ from those of a contacting bulk solution. We and others have been using potentiometric concentration cells, where a nanopore or nanotube membrane separates salt solutions of differing concentrations to explore this issue. The membranes studied contained a fixed pore/tube wall anionic charge, which ideally would prohibit anions and salt from entering the pore/tube-confined solution. We have been investigating experimental conditions that allow for this ideally permselective cation state to be achieved. Results of potentiometric investigations of a polymeric nanopore membrane (10 ± 2 nm-diameter pores) with anionic charge due to carbonate are presented here. While studies of this type have been reported using alkaline metal and alkaline earth cations, there have been no analogous studies using organic cations. This paper uses a homologous series of tetraalkylammonium ions to address this knowledge gap. The key result is that, in contrast to the inorganic cations, the ideal cation-permselective state could not be obtained under any experimental conditions for the organic cations. We propose that this is because these hydrophobic cations adsorb onto the polymeric pore walls. This makes ideality impossible because each adsorbed alkylammonium must bring a charge-balancing anion, Cl-, with it into the nanopore solution. The alkylammonium adsorption that occurred was confirmed and quantified by using surface contact angle measurements.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057885

RESUMO

Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this "double-layer overlap model" (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA