Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 16(7): 2333-2338, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28587468

RESUMO

In the past 50 years, isolated blood platelets have had restricted use in wound healing, cancer therapy, and organ and tissue transplant, to name a few. The major obstacle for its unrestricted use has been, among others, the presence of ultrahigh concentrations of growth factors and the presence of both pro-angiogenic and anti-angiogenic proteins. To overcome this problem requires the isolation and separation of the membrane bound secretory vesicles containing the different factors. In the current study, high-resolution imaging of isolated secretory vesicles from human platelets using atomic force microscopy (AFM) and mass spectrometry enabled characterization of the remaining vesicles size and composition following their immunoseparation. The remaining vesicles obtained following osmotic lysis, when subjected to immunoseparation employing antibody to different vesicle-associated membrane proteins (VAMPs), demonstrate for the first time that VAMP-3-, VAMP-7-, and VAMP-8-specific vesicles each possesses distinct size range and composition. These results provide a window into our understanding of the heterogeneous population of vesicles in human platelets and their stability following both physical manipulation using AFM and osmotic lysis of the platelet. This study further provides a platform for isolation and the detailed characterization of platelet granules, with promise for their future use in therapy. Additionally, results from the study demonstrate that secretory vesicles of different size found in cells reflect their unique and specialized composition and function.


Assuntos
Plaquetas/química , Proteoma/isolamento & purificação , Proteínas R-SNARE/isolamento & purificação , Vesículas Secretórias/química , Proteína 3 Associada à Membrana da Vesícula/isolamento & purificação , Plaquetas/metabolismo , Células Cultivadas , Fracionamento Químico/métodos , Humanos , Imunoprecipitação/métodos , Microscopia de Força Atômica , Anotação de Sequência Molecular , Pressão Osmótica , Proteoma/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína 3 Associada à Membrana da Vesícula/metabolismo
2.
J Cell Mol Med ; 16(4): 945-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21692982

RESUMO

The regulation of platelet volume significantly affects its function. Because water is the major molecule in cells and its active transport via water channels called aquaporins (AQPs) have been implicated in cellular and organelle volume regulation, the presence of water channels in platelets and their potential role in platelet volume regulation was investigated. G-protein-mediated AQP regulation in secretory vesicle swelling has previously been reported in neurons and in pancreatic acinar cells. Mercuric chloride has been demonstrated to inhibit most AQPs except AQP6, which is stimulated by the compound. Exposure of platelets to HgCl(2)-induced swelling in a dose-dependent manner, suggesting the presence of AQP6 in platelets. Immunoblot analysis of platelet protein confirmed the presence of AQP6, and also of G(αo), G(αi-1) and G(αi-3) proteins. Results from this study demonstrate for the first time that in platelets AQP6 is involved in cell volume regulation via a G-protein-mediated pathway.


Assuntos
Aquaporinas/fisiologia , Plaquetas/citologia , Tamanho Celular , Animais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA