RESUMO
The utilization of hybrid aqueous electrolytes has significantly broadened the electrochemical and temperature ranges of aqueous batteries, such as aqueous zinc and lithium-ion batteries, but the design principles for extreme operating conditions remain poorly understood. Here, we systematically unveil the ternary interaction involving salt-water-organic co-solvents and its intricate impacts on both the atomic-level and macroscopic structural features of the hybrid electrolytes. This highlights a distinct category of micelle-like structure electrolytes featuring organic-enriched phases and nanosized aqueous electrolyte aggregates, enabled by appropriate low donor number co-solvents and amphiphilic anions. Remarkably, the electrolyte enables exceptional high solubility, accommodating up to 29.8â m zinc triflate within aqueous micelles. This configuration maintains an intra-micellar salt-in-water setup, allowing for a broad electrochemical window (up to 3.86â V), low viscosity, and state-of-the-art ultralow-temperature zinc ion conductivity (1.58â mS cm-1 at -80 °C). Building upon the unique nature of the inhomogeneous localized aggregates, this micelle-like electrolyte facilitates dendrite-free Zn plating/stripping, even at -80 °C. The assembled Zn||PANI battery showcases an impressive capacity of 71.8â mAh g-1 and an extended lifespan of over 3000 cycles at -80 °C. This study opens up a promising approach in electrolyte design that transcends conventional local atomic solvation structures, broadening the water-in-salt electrolyte concept.
RESUMO
Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.
RESUMO
Research on non-noble metal bifunctional electrocatalysts with high efficiency and long-lasting stability is crucial for many energy storage devices such as zinc-air batteries. In this report, nitrogen-doped porous hollow carbon spheres with a size of about 300 nm were fabricated using a modified Stöber method and decorated with an FeNi alloy through a pyrolytic reduction process, resulting in a promising bifunctional electrocatalyst for both the oxygen evolution reaction and oxygen reduction reaction. The as-prepared FeNi@NHCS electrocatalyst exhibits excellent bifunctional activity in KOH electrolyte, attributed to its mesoporous structure, large specific surface area, and the strong coupling between the FeNi nanoalloy and nitrogen-doped carbon carriers. The electrocatalyst demonstrates excellent ORR performance with E1/2 = 0.828 V and OER activity with Ej=10 mA = 1.51 V. A zinc-air battery using FeNi@NHCS as the air electrode achieves an open-circuit voltage of 1.432 V and a maximum power density of 181.8 mW cm-2. After 300 h of galvanostatic charge-discharge cycles, the charge-discharge voltage gap (ΔU) of the battery had only decayed by 2.7%, demonstrating superior cycling stability.
RESUMO
Surface passivation and interface modification are effective strategies to acquire outstanding performances for perovskite solar cells (PeSCs). To suppress charge recombination and enhance the stability of the perovskite device, a hydrophobic two-dimensional (2D) perovskite is presented to construct a 3D-2D composite perovskite, passivating the perovskite surface/interfacial imperfection. Herein, a 3D-2D heterojunction perovskite is in situ synthesized on a 3D surface to maximize the charge transport and environmental stability. Through optimizing the annealing procedure systematically, the champion 3D-2D carbon-based PeSC achieves a power conversion efficiency of 17.95% and has wonderful long-term stability. Especially, an improved 3D-2D (3D-2D+) PeSC from restrict annealing even maintains 96.2% of the initial efficiency in air over 800 h and 90% efficiency under continuous 70 °C heating for 10 h owing to the passivation of the surface and thorough crystal boundary for the 3D-2D+ perovskite. The strong environmental stability of 3D-2D PeSCs has provided a wider avenue for fully low-temperature carbon-based PeSCs.
RESUMO
Aqueous Zn-ion batteries (AZIBs) have attracted increasing attention in next-generation energy storage systems due to their high safety and economic. Unfortunately, the side reactions, dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries. Here, we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a "catcher" to arrest active molecules (bound water molecules). The stable solvation structure of [Zn(H2O)6]2+ is capable of maintaining and completely inhibiting free water molecules. When [Zn(H2O)6]2+ is partially desolvated in the Helmholtz outer layer, the separated active molecules will be arrested by the "catcher" formed by the strong hydrogen bond N-H bond, ensuring the stable desolvation of Zn2+. The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm-2, Zn||V6O13 full battery achieved a capacity retention rate of 99.2% after 10,000 cycles at 10 A g-1. This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
RESUMO
Recently, two-dimensional (2D) materials and their heterostructures have been recognized as the foundation for future brain-like neuromorphic computing devices. Two-dimensional materials possess unique characteristics such as near-atomic thickness, dangling-bond-free surfaces, and excellent mechanical properties. These features, which traditional electronic materials cannot achieve, hold great promise for high-performance neuromorphic computing devices with the advantages of high energy efficiency and integration density. This article provides a comprehensive overview of various 2D materials, including graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), and black phosphorus (BP), for neuromorphic computing applications. The potential of these materials in neuromorphic computing is discussed from the perspectives of material properties, growth methods, and device operation principles.
RESUMO
We present organic-halide treatment in advance to maximize electron extraction of Cs2AgBiBr6 double perovskite solar cells. Through optimizing the organic halide and concentration systematically, the best carbon-based Cs2AgBiBr6 perovskite solar cell fabricated in an airing chamber achieves a power conversion efficiency of 2.03% and shows excellent long-term stability in air over 30 days.
RESUMO
Stable zinc (Zn)/electrolyte interface is critical for developing rechargeable aqueous Zn-metal batteries with long-term stability, which requires the dense and stable Zn electrodeposition. Herein, an interfacial lattice locking (ILL) layer is constructed via the electro-codeposition of Zn and Cu onto the Zn electrodes. The ILL layer shows a low lattice misfit (δ = 0.036) with Zn(002) plane and selectively locks the lattice orientation of Zn deposits, enabling the epitaxial growth of Zn deposits layer by layer. Benefiting from the unique orientation-guiding and robustly adhered properties, the ILL layer enables the symmetric Zn||Zn cells to achieve an ultralong life span of >6000 h at 1 mA cm-2 and 1 mAh cm-2 , a low overpotential (65 mV) at 10 mAh cm-2 , and a stable Zn plating/stripping for >90 h at an ultrahigh Zn depth of discharge (≈85%). Even with a limited Zn supply and a high current density (8.58 mA cm-2 ), the ILL@Zn||Ni-doped MnO2 cells can still survive for >2300 cycles.
RESUMO
The cyclic stability of the MnOx cathodes for rechargeable zinc ion batteries have substantial obstacles due to Mn3+ disproportionation produces Mn2+ caused by Jahn Teller lattice distortion effect in the process of Zn2+ inter/deintercalation. This mini review summarized bulk-phase and interface stability strategies of manganese oxide cathodes for aqueous Zn-MnOx batteries from the regulation of bulk electronic state of manganese oxide improves its structural stability and the formation of beneficial SEI layer at the interface of electrolyte. It provides theoretical support for the design of manganese oxide cathode materials for aqueous zinc ion batteries with high stability.
RESUMO
Replacing sluggish oxygen evolution reaction with thermodynamically favorable urea oxidation reaction is a promising strategy for hydrogen-generation from water with low-energy consumption. However, the involved six-electron transfer process makes it formidable and seems critical. Hence, exploring high-efficient and low-cost bifunctional catalysts toward urea electrolysis is highly desirable. Herein, hierarchical cuprous sulfide@nickel selenide nanowire arrays were grown on copper foam (termed as Cu2S@Ni3Se2) via a developed method composed of in situ chemical deposition, ion exchange and electrodeposition. The as-prepared bifunctional Cu2S@Ni3Se2 not only shows remarkable hydrogen evolution reaction (HER) activity but also affords excellent urea oxidation reaction (UOR) activity. A subsequently configured Cu2S@Ni3Se2//Cu2S@Ni3Se2 full-cell (Cu2S@Ni3Se2 working as both anode and cathode) only requires a low voltage of 1.48 V to launch a current density of 10 mA cm-2, not only surpassing the routine water electrolysis (1.70 V), but also outperforming the state-of-the-art Pt/C//IrO2 for urea electrolysis (1.65 V). Moreover, the performance is superior to most recently reported ones that configured with other catalysts. This work presents a solid step for hydrogen-generation from water with low-energy consumption.
RESUMO
Developing two-dimensional (2D) materials as anode materials have been proved a promising approach to significantly improve the charge storage performances of alkali metal ion. Herein, we investigate mono-layered VN2 as an anode material in Li, Na and K ion batteries. Firstly, the high stability of 2D-VN2 has been demonstrated via calculating the phonon spectra. 2D-VN2 is capable of delivering high capacities of 678.8, 339.4 and 1357.6 mAh g-1 in Li+, K+ and Na+ storage, respectively. In addition, the metallic properties and corresponding high electrical conductivity and low diffusion barriers of 201.1 meV for Li atoms, 34.7 meV for K atoms and 84.1 meV for Na atoms on VN2 surface, indicating good capacity and the superior rate performances of alkali metal atoms migration on VN2. The calculated average voltage of Li, Na and K are respectively 0.81 V, 0.29 V and 0.77 V, suggesting a promising voltage behavior compared with other 2D materials.
RESUMO
With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, there is a need to enhance the specific energy density and specific power density of related electrochemical devices to meet the fast-growing requirements of energy storage. Battery-supercapacitor hybrid devices (BSHDs), combining the high-energy-density feature of batteries and the high-power-density properties of supercapacitors, have attracted mass attention in terms of energy storage. However, the electrochemical performances of cathode materials for BSHDs are severely limited by poor electrical conductivity and ion transport kinetics. As the rich redox reactions induced by transition metal compounds are able to offer high specific capacity, they are an ideal choice of cathode materials. Therefore, this paper reviews the currently advanced progress of transition metal compound-based cathodes with high-rate performance in BSHDs. We discuss some efficient strategies of enhancing the rate performance of transition metal compounds, including developing intrinsic electrode materials with high conductivity and fast ion transport; modifying materials, such as inserting defects and doping; building composite structures and 3D nano-array structures; interfacial engineering and catalytic effects. Finally, some suggestions are proposed for the potential development of cathodes for BSHDs, which may provide a reference for significant progress in the future.
RESUMO
Among the new energy storage devices, aqueous zinc ion batteries (AZIBs) have become the current research hot spot with significant advantages of low cost, high safety, and environmental protection. However, the cycle stability of cathode materials is unsatisfactory, which leads to great obstacles in the practical application of AZIBs. In recent years, a large number of studies have been carried out systematically and deeply around the optimization strategy of cathode material stability of AZIBs. In this review, the factors of cyclic stability attenuation of cathode materials and the strategies of optimizing the stability of cathode materials for AZIBs by vacancy, doping, object modification, and combination engineering were summarized. In addition, the mechanism and applicable material system of relevant optimization strategies were put forward, and finally, the future research direction was proposed in this article.
RESUMO
The alkaline zinc-based batteries with high energy density are becoming a research hotspot. However, the poor cycle stability and low-rate performance limit their wide application. Herein, ultra-thin CoNiO2 nanosheet with rich oxygen defects anchored on the vertically arranged Ni nanotube arrays (Od-CNO@Ni NTs) is used as a positive material for rechargeable alkaline Ni-Zn batteries. As the highly uniform Ni nanotube arrays provide a fast electron/ion transport path and abundant active sites, the Od-CNO@Ni NTs electrode delivers excellent capacity (432.7 mAh g-1) and rate capability (218.3 mAh g-1 at 60 A g-1). Moreover, our Od-CNO@Ni NTs//Zn battery is capable of an ultra-long lifespan (93.0% of initial capacity after 5000 cycles), extremely high energy density of 547.5 Wh kg-1 and power density of 92.9 kW kg-1 (based on the mass of cathode active substance). Meanwhile, the theoretical calculations reveal that the oxygen defects can enhance the interaction between electrode surface and electrolyte ions, contributing to higher capacity. This work opens a reasonable idea for the development of ultra-durable, ultra-fast, and high-energy Ni-Zn battery.
RESUMO
Compared with a single nanowire (NW) or NW array, the simpler preparation process of an NW network (NWN) enables it to be fabricated in large-scale, flexible, and wearable applications of photodetectors (PDs). However, the NWN behaves many microinterfaces (MIs) between NWs, seriously limiting the device performance and stability. Here, we demonstrate a welding strategy for an MAPbI3 NWN, which enhances the crystallinity of the NWN and enhances the radial transmission of photogenerated carriers, leading to a better device performance with ultrahigh stability. Our NWN PDs fabricated by using the welding strategy showed ultrahigh performance with an on/off ratio and detectivity of 2.8 × 104 and 4.16 × 1012 Jones, respectively, which are the best performance for reported metal-semiconductor-metal (MSM) perovskite NWN PDs and are comparable to those of single-NW or NW array PDs. More importantly, our unpackaged NWN PDs show ultrahigh storage stability in air with a humidity of 55-65%, and the flexible NWN PDs can enable 250 bending cycles at different bending radii and 1000 bending cycles at fixed bending radii with no performance degradation being observed. These results indicate our welding strategy is very powerful for improving the performance of the NW device with applications in the wearable field.
RESUMO
Zinc-based electrochemistry attracts significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. In this work, we propose a 2.0-V high-voltage Zn-MnO2 battery with core@shell Co3O4@MnO2 on carbon cloth as a cathode, an optimized aqueous ZnSO4 electrolyte with Mn2+ additive, and a Zn metal anode. Benefitting from the architecture engineering of growing Co3O4 nanorods on carbon cloth and subsequently deposited MnO2 on Co3O4 with a two-step hydrothermal method, the binder-free zinc-ion battery delivers a high power of 2384.7 W kg-1, a high capacity of 245.6 mAh g-1 at 0.5 A g-1, and a high energy density of 212.8 Wh kg-1. It is found that the Mn2+ cations are in situ converted to Mn3O4 during electrochemical operations followed by a phase transition into electroactive MnO2 in our battery system. The charge-storage mechanism of the MnO2-based cathode is Zn2+/Zn and H+ insertion/extraction. This work shines light on designing multivalent cation-based battery devices with high output voltage, safety, and remarkable electrochemical performances.
RESUMO
Cd x Zn1-x S nanocrystals with sizes ranging from 3-11 nm were synthesized by a simple organic solution method. The nanocrystals possess a cubic zinc-blende structure and the bandgap blue-shifts from 2.1 eV to 3.4 eV by increasing the composition of Zn ions in the solid solutions. After a facile ligand exchange process, the photocatalytic activity for H2 production of the Cd x Zn1-x S nanocrystals was investigated under visible-light irradiation (λ ≥ 420 nm) with Na2SO3/Na2S as the electron donor. It was found that the Cd0.8Zn0.2S had the highest photoactivity with H2 evolution rate of 6.32 mmol g-1 h-1. By in situ adding Pt precursors into the reaction solution, inhomogenous Pt-Cd x Zn1-x S nanoheterostructures were formed, which accounted for a 30% enhancement for the H2 evolution rate comparing with that of pure Cd0.8Zn0.2S nanocrystals. This work highlights the use of facile organic synthesis in combination with suitable surface modification to enhance the activity of the photocatalysts.
RESUMO
Three dimensional (3D) hierarchical network configurations are composed of NiCo2S4 nanotube @Ni-Mn layered double hydroxide (LDH) arrays in situ grown on graphene sponge. The 3D graphene sponge with robust hierarchical porosity suitable for as a basal growth has been obtained from a colloidal dispersion of graphene oxide using a simple directional freeze-drying technique. The high conductive NiCo2S4 nanotube arrays grown on 3D graphene shows excellent pseudocapacity and good conductive support for high-performance Ni-Mn LDH. The 3D NiCo2S4@Ni-Mn LDH/GS shows a high specific capacitance (Csp) 1740 mF cm(-2) at 1 mA cm(-2), even at 10 mA cm(-2), 1267.9 mF cm(-2) maintained. This high-performance composite electrode proposes a new and feasible general pathway as 3D electrode configuration for energy storage devices.
RESUMO
A 3D highly conductive urchin-like NiCo2S4 nanostructure has been successfully prepared using a facile precursor transformation method. Remarkably, the NiCo2S4 electroactive material demonstrates superior electrochemical performance with ultrahigh high-rate capacitance, very high specific capacitance, and excellent cycling stability.