RESUMO
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2 , recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GACï¼respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.
Assuntos
Arachis , Melhoramento Vegetal , Arachis/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , FenótipoRESUMO
The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbioma Gastrointestinal/genética , Chumbo/toxicidade , Chumbo/metabolismo , Bactérias/metabolismo , Firmicutes/metabolismo , SoloRESUMO
The development of alginate-based composites in agriculture to combat nutrient loss and drought for sustainable development has drawn increasing attention in the scientific community. Existing studies are however scattered, and the retention and slow-release mechanisms of alginate-based composites are not well understood. This paper systematically reviews the current literature on the preparation, characterization, and agricultural applications of various alginate-based composites. The synthesis methods of alginate-based composites are firstly summarized, followed by a review of available analytical techniques to characterize alginate-based composites for the attainment of their desired performance. Secondly, the performance and controlling factors for agricultural applications of alginate-based composites are discussed, including aquasorb, slow-release fertilizer, soil amendment, microbial inoculants, and controlled release of pesticides for pest management. Finally, suggestions and future perspectives are proposed to expand the applications of alginate-based composites for sustainable agriculture.
Assuntos
Inoculantes Agrícolas , Praguicidas , Solo , Alginatos , Agricultura/métodos , Fertilizantes/análiseRESUMO
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
RESUMO
Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.
Assuntos
Arachis , Fabaceae , Arachis/genética , Ácidos Indolacéticos , Filogenia , Melhoramento VegetalRESUMO
Complex simulation models are a valuable tool to inform nutrient management decisions aimed at reducing hypoxia in the northern Gulf of Mexico, yet simulated hypoxia response to reduced nutrients varies greatly between models. We compared two biogeochemical models driven by the same hydrodynamics, the Coastal Generalized Ecosystem Model (CGEM) and Gulf of Mexico Dissolved Oxygen Model (GoMDOM), to investigate how they differ in simulating hypoxia and their response to reduced nutrients. Different phytoplankton nutrient kinetics produced 2-3 times more hypoxic area and volume on the western shelf in CGEM compared to GoMDOM. Reductions in hypoxic area were greatest in the western shelf, comprising 72% (~4,200 km2) of the total shelfwide hypoxia response. The range of hypoxia responses from multiple models suggests a 60% load reduction may result in a 33% reduction in hypoxic area, leaving an annual hypoxic area of ~9,000 km2 based on the latest 5-yr average (13,928 km2).
RESUMO
The multidecadal expansion of northern Gulf of Mexico continental shelf hypoxia is a striking example of the adverse effects of anthropogenic nutrient enrichment on coastal oceans. Increased nutrient inputs and widespread shelf hypoxia have resulted in numerous dissolved oxygen (DO) water quality problems in nearshore coastal waters of Louisiana. A large hydrographic dataset compiled from research programs spanning 30 years and the three-dimensional hydrodynamic-biogeochemical model CGEM (Coastal Generalized Ecosystem Model) were integrated to explore the interconnections of low DO waters across the continental shelf to nearshore coastal waters of Louisiana. Cross-shelf vertical profiles showed contiguous low DO bottom waters extending from the shelf to coastal waters nearly every year in the 30+ year time series, which were concurrent with strong cross-shelf pycnoclines. A threshold Brunt-Väisälä frequency of 40 cycles h-1 was critical to maintaining the cross-shelf subpycnocline layers and facilitating the formation of a contiguous low DO water mass. Field observations and model simulations identified periods of wind-driven bottom water upwelling lasting between several days to several weeks, resulting in both physical advection of oxygen-depleted offshore waters to the nearshore and enhanced nearshore stratification. Both the upwelling of low DO bottom waters and in situ respiration were of sufficient temporal and spatial extent to drive DO below Louisiana's DO water quality criteria. Basin-wide nutrient management strategies aimed at reducing nutrient inputs and shelf hypoxia remain essential to improving the nearshore coastal water quality across the northern Gulf of Mexico.
Assuntos
Ecossistema , Oxigênio , Golfo do México , Humanos , Hipóxia , Louisiana , Oceanos e Mares , Oxigênio/análiseRESUMO
The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.
Assuntos
Benzopiranos , Lignina , Carboidratos , CulináriaRESUMO
Recent advancement in molecular techniques has spurred waves of studies on responses of microorganisms to lead contamination exposure, leveraging detailed phylogenetic analyses and functional gene identification to discern the effects of lead toxicity on microbial communities. This work provides a comprehensive review of recent research on (1) microbial community changes in contaminated aquatic sediments and terrestrial soils; (2) lead resistance mechanisms; and (3) using lead resistance genes for lead biosensor development. Sufficient evidence in the literature, including both in vitro and in situ studies, indicates that exposure to lead contamination inhibits microbial activity resulting in reduced respiration, suppressed metabolism, and reduced biomass as well as altered microbial community structure. Even at sites where microbial communities do not vary compositionally with contamination levels due to extremely long periods of exposure, functional differences between microbial communities are evident, indicating that some microorganisms are susceptible to lead toxicity as others develop resistance mechanisms to survive in lead contaminated environments. The main mechanisms of lead resistance involve extracellular and intracellular biosorption, precipitation, complexation, and/or efflux pumps. These lead resistance mechanisms are associated with suites of genes responsible for specific lead resistance mechanisms and may serving as indicators of lead contamination in association with dominance of certain phyla. This allows for development of several lead biosensors in environmental biotechnology. To promote applications of these advanced understandings, molecular techniques, and lead biosensor technology, perspectives of future work on using microbial indicators for site ecological assessment is presented.
RESUMO
Carbon-based adsorbents such as graphene and its derivatives, carbon nanotubes, activated carbon, and biochar are often used to remove heavy metals from aqueous solutions. One of the important aspects of effective carbon adsorbents for heavy metals is their tunable surface functional groups. To promote the applications of functionalized carbon adsorbents in heavy metal removal, a systematic documentation of their syntheses and interactions with metals in aqueous solution is crucial. This work provides a comprehensive review of recent research on various carbon adsorbents in terms of their surface functional groups and the associated removal behaviors and performances to heavy metals in aqueous solutions. The governing removal mechanisms of carbon adsorbents to aqueous heavy metals are first outlined with a special focus on the roles of surface functional groups. It then summarizes and categorizes various synthesis methods that are commonly used to introduce heteroatoms, primarily oxygen, nitrogen, and sulfur, onto carbon surfaces for enhanced surface functionalities and sorptive properties to heavy metals in aqueous solutions. After that, the effects of various functional groups on adsorption behaviors of heavy metals onto the functionalized carbon adsorbents are elucidated. A perspective of future work on functional carbon adsorbents for heavy metal removal as well as other potential applications is also presented at the end.
RESUMO
Alginate-based composites have been extensively studied for applications in energy and environmental sectors due to their biocompatible, nontoxic, and cost-effective properties. This review is designed to provide an overview of the synthesis and application of alginate-based composites. In addition to an overview of current understanding of alginate biopolymer, gelation process, and cross-linking mechanisms, this work focuses on adsorption mechanisms and performance of different alginate-based composites for the removal of various pollutants including dyes, heavy metals, and antibiotics in water and wastewater. While encapsulation in alginate gel beads confers protective benefits to engineered nanoparticles, carbonaceous materials, cells and microbes, alginate-based composites typically exhibit enhanced adsorption performance. The physical and chemical properties of alginate-based composites determine the effectiveness under different application conditions. A series of alginate-based composites and their physicochemical and sorptive properties have been summarized. This critical review not only summarizes recent advances in alginate-based composites but also presents a perspective of future work for their environmental applications.
RESUMO
A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and disaggregate temporarily, and they may not be accurate for local watersheds (i.e., state level or smaller watersheds). This study applied the US-EPA (Environmental Protection Agency)'s Climate Assessment Tool (CAT) to create future climate variability scenarios based on historical measured data for local watersheds. As a case demonstration, CAT was employed in conjunction with HSPF (Hydrological Simulation Program-FORTRAN) model to assess the impacts of the potential future extreme rainfall events and air temperature increases upon nitrate-nitrogen (NO3-N) and orthophosphate (PO4) loads in the Lower Yazoo River Watershed (LYRW), a local watershed in Mississippi, USA. Results showed that the 10 and 20% increases in rainfall rate, respectively, increased NO3-N load by 9.1 and 18% and PO4 load by 12 and 24% over a 10-year simulation period. In contrast, simultaneous increases in air temperature by 1.0 oC and rainfall rate by 10% as well as air temperature by 2.0 oC and rainfall rate by 20% increased NO3-N load by 12% and 20%%, and PO4 load by 14 and 26 %, respectively. A summer extreme rainfall scenario was created if a 10% increase in rainfall rate increased the total volume of rainwater for that summer by 10% or more. When this event occurred, it could increase the monthly loads of NO3-N and PO4, by 31 and 41%, respectively, for that summer. Therefore, the extreme rainfall events had tremendous impacts on the NO3-N and PO4 loads. It is apparent that CAT is a flexible and useful tool to modify historical rainfall and air temperature data to predict climate variability impacts on water quality for local watersheds.
RESUMO
The use of controlled-release urea (CRU) has become one of best management practices for increasing crop yield and improving nitrogen (N) use efficiency (NUE). However, the effects of CRU on direct-seeded rice are not well understood while direct-seeding has gradually replaced transplanting due to increasing labor cost and lack of irrigation water. The objective of this two-year field experiment was to compare the effects of the CRU at four rates (120, 180, 240 and 360â¯kgâ¯Nâ¯ha-1, CRU1, CRU2, CRU3 and CRU4, respectively) with a conventional urea fertilizer (360â¯kgâ¯Nâ¯ha-1; U) and a control (no N fertilizer applied; CK) on yield, biomass, NUE of direct-seeded rice and soil nutrients. The results indicated that the successive release rates of N from CRU corresponded well to the N requirements of rice. The use of CRU3 and CRU4 increased rice grain yields by 20.8 and 28.7%, respectively, compared with U. In addition, the NUEs were improved by all CRU treatments compared to the U treatment. Concentrations of NO3--N and NH4+-N in the soil were increased, especially during the later growth stages of the rice, and the leaching of N was reduced with CRU treatments. In conclusion, applying CRU on direct-seeded rice increased the crops yields and NUE, increased nitrogen availability at the late growth stages, and reduced N leaching.
Assuntos
Fertilizantes , Nitrogênio , Oryza/crescimento & desenvolvimento , Ureia , Agricultura , Preparações de Ação Retardada , SoloRESUMO
Breeding programs aim to improve the yield and quality of peanut (Arachis hypogaea L.); using association mapping to identify genetic markers linked to these quantitative traits could facilitate selection efficiency. A peanut association panel was established consisting of 268 lines with extensive phenotypic and genetic variation, meeting the requirements for association analysis. These lines were grown over 3 years and the key agronomic traits, including protein and oil content were examined. Population structure (Q) analysis showed two subpopulations and clustering analysis was consistent with Q-based membership assignment and closely related to botanical type. Relative Kinship (K) indicated that most of the panel members have no or weak familial relatedness, with 52.78% of lines showing K = 0. Linkage disequilibrium (LD) analysis showed a high level of LD occurs in the panel. Model comparisons indicated false positives can be effectively controlled by taking Q and K into consideration and more false positives were generated by K than Q. A preliminary association analysis using a Q + K model found markers significantly associated with oil, protein, oleic acid, and linoleic acid, and identified a set of alleles with positive and negative effects. These results show that this panel is suitable for association analysis, providing a resource for marker-assisted selection for peanut improvement.
Assuntos
Arachis/genética , Estudos de Associação Genética , Fenômenos Fisiológicos da Nutrição , Característica Quantitativa Herdável , Alelos , Análise por Conglomerados , Ácidos Graxos/metabolismo , Marcadores Genéticos , Variação Genética , Genoma de Planta , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Phosphorus contamination is a global issue, and cost-effective remediation is sought for removing phosphorus from water. We applied a novel use of waste material called shotblast dust in a pilot-scale reactor to remove phosphorus from water. Results indicate that shotblast dust was effective in treating phosphorus-laden water with 132 kg of the material treating 568 liters of 220 µg/L total phosphorus (T-P) water on a daily basis, achieving approximately 60% removal of T-P in 7 days.
RESUMO
Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs.
RESUMO
Development of effective pollution mitigation strategies require an understanding of the pollution sources and factors influencing fecal pollution loading. Fecal contamination of Turkey Creek in Gulfport, Mississippi, one of the nation's most endangered creeks, was studied through a multi-tiered approach. Over a period of approximately two years, four stations across the watershed were analyzed for nutrients, enumeration of E. coli, male-specific coliphages and bioinformatic analysis of sediment microbial communities. The results demonstrated that two stations, one adjacent to a lift station and one just upstream from the wastewater-treatment plant, were the most impacted. The station adjacent to land containing a few livestock was the least impaired. While genotyping of male-specific coliphage viruses generally revealed a mixed viral signature (human and other animals), fecal contamination at the station near the wastewater treatment plant exhibited predominant impact by municipal sewage. Fecal indicator loadings were positively associated with antecedent rainfall for three of four stations. No associations were noted between fecal indicator loadings and any of the nutrients. Taxonomic signatures of creek sediment were unique to each sample station, but the sediment microbial community did overlap somewhat following major rain events. No presence of Escherichia coli (E. coli) or enterococci were found in the sediment. At some of the stations it was evident that rainfall was not always the primary driver of fecal transport. Repeated monitoring and analysis of a variety of parameters presented in this study determined that point and non-point sources of fecal pollution varied spatially in association with treated and/or untreated sewage.
Assuntos
Monitoramento Ambiental , Escherichia coli , Fezes , Sedimentos Geológicos , Fezes/microbiologia , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Escherichia coli/isolamento & purificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Mississippi , Microbiologia da Água , Microbiota , Colífagos/isolamento & purificaçãoRESUMO
Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.
Assuntos
Arachis , Carvão Vegetal , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Carvão Vegetal/química , Arachis/microbiologia , Poluentes do Solo/análise , Solo/química , Microbiota , Rizosfera , Recuperação e Remediação Ambiental/métodosRESUMO
Oyster beds are disappearing worldwide through a combination of over-harvesting, diseases, and salinity alterations in the coastal zone. Sensitivity of oysters to variable discharge and salinity is particularly acute in small sub-tropical estuaries subject to regulated freshwater releases. South Florida has sub-tropical estuaries where watershed flood control sometimes results in excessive freshwater inflow to estuaries during the wet season (May-Oct) and reduced discharge and increased salinities in the dry season (Nov-Apr). The potential to reserve freshwater accumulated during the wet season could offer the capacity to regulate freshwater at different temporal scales, thus optimizing salinity conditions for estuarine biota. The goal of this study was to use simulation modeling to explore the effects of freshwater inflows and salinity on adult oyster survival in the Caloosahatchee River Estuary (CRE) in southwest Florida. Water managers derived three different freshwater inflow scenarios for the CRE based on historical and modified watershed attributes for the time period of 1965-2000. Three different salinity time series were generated from the inflow scenarios at each of three sites in the lower CRE and used to conduct nine different oyster simulations. Overall, the predicted densities of adult oysters in the upstream site were 3-4 times greater in seasons that experienced reduced freshwater inflow (e.g., increased salinity) with oyster density in the lower estuary much less influenced by the inflows. Potential storage of freshwater reduced the frequency of extreme flows in the wet season and helped to maintain minimum inflow in the dry season near the estuarine mouth. Analyses of inflows indicated that discharges ranging from 0 to 1,500 cfs could promote favorable salinities of 10-25 in the lower CRE depending on wet versus dry season climatic conditions. This range of inflows is similar to that derived in other studies of the CRE and emphasizes the value of simulation models to help prescribe freshwater releases which benefit estuarine biota.
Assuntos
Estuários , Modelos Biológicos , Ostreidae , Salinidade , Movimentos da Água , Animais , Simulação por Computador , FloridaRESUMO
Controlling water pollution by phosphorus (P) and satisfying high demand of P fertilizer in agriculture are two global challenges for sustainable development. This paper presents a novel application of iron modified biochar as an adsorbent to recover P from wastewater and reuse it as P fertilizer. Granular iron biochar (GIB) and ball milled powder iron biochar (PIB) were prepared from pinewood pretreated with iron salt. The biochars were characterized to determine their surface properties. Their effectiveness in P removal from wastewater was evaluated with packed column filters for GIB and continuous flow reactors for PIB. The spent biochar was tested to determine if it is safe for agricultural application as alternative P fertilizer. The results showed that GIB and PIB were highly porous, had high specific surface area (385 and 331 m2 g-1, respectively), and contained high levels of iron (mainly γ-Fe2O3). Both GIB and PIB showed excellent performance for P removal from wastewater. The P adsorption capacity of GIB in the column filter was 16 times larger than that of sand. A fast P adsorption kinetic rate (0.144 min-1) was observed for PIB in the flow reactor. The spent biochars showed no negative effects on bean germination or even some positive effects on seedling growth, indicating they can be safely used as P fertilizer. This study provides the technical basis of a sustainable wastewater treatment strategy that can capture the full values of water, P, and biochar.