Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Theor Appl Genet ; 136(2): 25, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781491

RESUMO

KEY MESSAGE: A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.


Assuntos
Hemípteros , Oryza , Animais , Humanos , Masculino , Genes de Plantas , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Plântula/genética
2.
Plant Cell Rep ; 41(2): 319-335, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837515

RESUMO

KEY MESSAGE: Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a "Kranz-like" anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.


Assuntos
Proteínas de Repetições Ricas em Leucina/genética , Proteínas NLR/genética , Oryza/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , DNA Bacteriano , Resistência à Doença/genética , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Proteínas de Repetições Ricas em Leucina/metabolismo , Células do Mesofilo , Mutação , Proteínas NLR/metabolismo , Oryza/anatomia & histologia , Fotossíntese , Folhas de Planta/citologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/anatomia & histologia , Plântula/genética
3.
Plant Cell Rep ; 39(1): 149-162, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31570974

RESUMO

KEY MESSAGE: The QTL-seq approach was used to identify QTLs for spikelet fertility under heat stress in rice. QTLs were detected on chromosomes 1, 2 and 3. Rice is a staple food of more than half of the global population. Rice production is increasingly affected by extreme environmental fluctuations caused by climate change. Increasing temperatures that exceed the optimum temperature adversely affect rice growth and development, especially during reproductive stages. Heat stress during the reproductive stages has a large effect on spikelet fertility; hence, the yield decreases. To sustain rice yields under increasing temperatures, the development of rice varieties for heat tolerance is necessary. In this study, we applied the QTL-seq approach to rapidly identify QTLs for spikelet fertility under heat stress (air temperature of 40-45 °C) based on two DNA pools, each consisting of 25 individual plants that exhibited a heat-tolerant or heat-sensitive phenotype from an F2 population of a cross between M9962 (heat tolerant) and Sinlek (heat sensitive). Three QTLs, qSF1, qSF2 and qSF3, were detected on chromosomes 1, 2 and 3, respectively, according to the highest contrasting SNP index between the two bulks. The QTLs identified in this study were found to overlap or were linked to QTLs previously identified in other crosses using conventional QTL mapping. A few highly abundant and anther-specific genes that contain nonsynonymous variants were identified within the QTLs and were proposed to be potential candidate genes. These genes could be targets in rice breeding programs for heat tolerance.


Assuntos
Flores/genética , Temperatura Alta/efeitos adversos , Oryza/genética , Termotolerância/genética , Mapeamento Cromossômico , Fertilidade/genética , Flores/crescimento & desenvolvimento , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estresse Fisiológico , Sequenciamento Completo do Genoma
4.
Genomics ; 111(4): 661-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775784

RESUMO

Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Magnaporthe/genética , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/metabolismo
5.
Plant Physiol ; 170(3): 1655-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813793

RESUMO

Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective.


Assuntos
Clorofila/metabolismo , Perfilação da Expressão Gênica/métodos , Oryza/genética , Fotossíntese/genética , Folhas de Planta/genética , Clorofila/química , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/ultraestrutura , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Fatores de Tempo
6.
Theor Appl Genet ; 130(12): 2557-2565, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28887587

RESUMO

KEY MESSAGE: The gene conferring a "pandan-like" aroma of winter melon was identified. The sequence variation (804-bp deletion) found in the gene was used as the target for functional marker development. Winter melon (Benincasa hispida), a member of the Cucurbitaceae family, is a commonly consumed vegetable in Asian countries that is popular for its nutritional and medicinal value. A "pandan-like" aroma, which is economically important in crops including rice and soybean, is rarely found in most commercial varieties of winter melon, but is present in some landraces. This aroma is a value-added potential trait in breeding winter melon with a higher economic value. In this study, we confirmed that the aroma of winter melon is due to the potent volatile compound 2-acetyl-1-pyrroline (2AP) as previously identified in other plants. Based on an analysis of public transcriptome data, BhAMADH encoding an aminoaldehyde dehydrogenase (AMADH) was identified as a candidate gene conferring aroma of winter melon. A sequence comparison of BhAMADH between the aromatic and non-aromatic accessions revealed an 804-bp deletion encompassing exons 11-13 in the aromatic accession. The deletion caused several premature stop codons and could result in a truncated protein with a length of only 208 amino acids compared with 503 amino acids in the normal protein. A functional marker was successfully developed based on the 804-bp deletion and validated in 237 F2 progenies. A perfect association of the marker genotypes and aroma phenotypes indicates that BhAMADH is the major gene conferring the aroma. The recently developed functional marker could be efficiently used in breeding programs for the aroma trait in winter melon.


Assuntos
Aldeído Desidrogenase/genética , Cucurbitaceae/genética , Odorantes , Pirróis/química , Deleção de Sequência , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Cucurbitaceae/enzimologia , Genes de Plantas , Marcadores Genéticos , Análise de Sequência de DNA
7.
Plant J ; 84(2): 257-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26333774

RESUMO

The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C(4) traits into C(3) plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C(4) plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C(4) species from C(3) species. To identify genetic factors that specify C(4) leaf anatomy, we generated ethyl methanesulfonate- and γ-ray-mutagenized populations of the C(4) species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F(2) populations as homozygous recessive alleles. Bulk segregant analysis using next-generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C(4) and C(3) leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.


Assuntos
Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sorghum/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo
8.
Front Plant Sci ; 15: 1337463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504887

RESUMO

Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 - 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.

9.
Plant Sci ; 330: 111624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36737006

RESUMO

Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Arabidopsis/metabolismo , Melhoramento Vegetal , Água/metabolismo
10.
J Exp Bot ; 63(3): 1381-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143916

RESUMO

The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter. It is shown that four cytosine residues in the PEPC promoter are heavily methylated in maize root tissue. In leaves, de-methylation of these cytosines is dependent on illumination and is coincident with elevated PEPC expression. Furthermore, light-regulated de-methylation of these cytosines occurs only in mesophyll cells. No methylation was discovered in the 0.6 kb promoter required for mesophyll-specific expression indicating that cytosine methylation is not required to direct the cell-specificity of PEPC expression. This raises interesting questions regarding the function of the cell-specific cytosine de-methylation observed in the upstream region of the PEPC promoter.


Assuntos
Fosfoenolpiruvato Carboxilase/genética , Regiões Promotoras Genéticas/genética , Zea mays/enzimologia , Zea mays/genética , Metilação de DNA/genética
11.
Theor Appl Genet ; 125(5): 887-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22576235

RESUMO

Aromatic rice is an important commodity for international trade, which has encouraged the interest of rice breeders to identify the genetic control of rice aroma. The recessive Os2AP gene, which is located on chromosome 8, has been reported to be associated with rice aroma. The 8-bp deletion in exon 7 is an aromatic allele that is present in most aromatic accessions, including the most popular aromatic rice varieties, Jasmine and Basmati. However, other mutations associated with aroma have been detected, but the other mutations are less frequent. In this study, we report an aromatic allele, a 3-bp insertion in exon 13 of Os2AP, as a major allele found in aromatic rice varieties from Myanmar. The insertion is in frame and causes an additional tyrosine (Y) in the amino acid sequence. However, the mutation does not affect the expression of the Os2AP gene. A functional marker for detecting this allele was developed and tested in an aroma-segregating F(2) population. The aroma phenotypes and genotypes showed perfect co-segregation of this population. The marker was also used for screening a collection of aromatic rice varieties collected from different geographical sites of Myanmar. Twice as many aromatic Myanmar rice varieties containing the 3-bp insertion allele were found as the varieties containing the 8-bp deletion allele, which suggested that the 3-bp insertion allele originated in regions of Myanmar.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos , Oryza/genética , Reação em Cadeia da Polimerase/métodos , Olfato/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Variação Genética , Genótipo , Dados de Sequência Molecular , Mutação/genética , Mianmar , Fenótipo , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
12.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448566

RESUMO

Dirty panicle disease in coconuts (Cocos nucifera) was first observed in the KU-BEDO Coconut BioBank, Nakhon Pathom province, Thailand. The occurrence of the disease covers more than 30% of the total coconut plantation area. The symptoms include small brown to dark brown spots and discoloration of male flowers. Herein, three fungal strains were isolated from infected samples. Based on the morphological characteristics the fungal isolates, they were classified into two genera, namely, Alternaria (Al01) and Fusarium (FUO01 and FUP01). DNA sequences of internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-α (tef1-α), and RNA polymerase II second largest subunit (rpb2) revealed Al01 as Alternaria burnsii, whereas DNA sequences of ITS, rpb2, and tef1-α identified FUO01 and FUP01 as Fusarium clavum and F. tricinctum, respectively. A pathogenicity test by the agar plug method demonstrated that these pathogens cause dirty panicle disease similar to that observed in natural infections. To the best of our knowledge, this is the first report on the novel dirty panicle disease in coconuts in Thailand or elsewhere, demonstrating that it is associated with the plant pathogenic fungi A. burnsii, F. clavum, and F. tricinctum.

13.
Front Plant Sci ; 13: 781153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574109

RESUMO

Agricultural crop breeding programs, particularly at the national level, typically consist of a core panel of elite breeding cultivars alongside a number of local landrace varieties (or other endemic cultivars) that provide additional sources of phenotypic and genomic variation or contribute as experimental materials (e.g., in GWAS studies). Three issues commonly arise. First, focusing primarily on core development accessions may mean that the potential contributions of landraces or other secondary accessions may be overlooked. Second, elite cultivars may accumulate deleterious alleles away from nontarget loci due to the strong effects of artificial selection. Finally, a tendency to focus solely on SNP-based methods may cause incomplete or erroneous identification of functional variants. In practice, integration of local breeding programs with findings from global database projects may be challenging. First, local GWAS experiments may only indicate useful functional variants according to the diversity of the experimental panel, while other potentially useful loci-identifiable at a global level-may remain undiscovered. Second, large-scale experiments such as GWAS may prove prohibitively costly or logistically challenging for some agencies. Here, we present a fully automated bioinformatics pipeline (riceExplorer) that can easily integrate local breeding program sequence data with international database resources, without relying on any phenotypic experimental procedure. It identifies associated functional haplotypes that may prove more robust in determining the genotypic determinants of desirable crop phenotypes. In brief, riceExplorer evaluates a global crop database (IRRI 3000 Rice Genomes) to identify haplotypes that are associated with extreme phenotypic variation at the global level and recorded in the database. It then examines which potentially useful variants are present in the local crop panel, before distinguishing between those that are already incorporated into the elite breeding accessions and those only found among secondary varieties (e.g., landraces). Results highlight the effectiveness of our pipeline, identifying potentially useful functional haplotypes across the genome that are absent from elite cultivars and found among landraces and other secondary varieties in our breeding program. riceExplorer can automatically conduct a full genome analysis and produces annotated graphical output of chromosomal maps, potential global diversity sources, and summary tables.

14.
Front Plant Sci ; 13: 994560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275605

RESUMO

Rice is the staple food for more than half of the world's population. Iron toxicity limits rice production in several regions of the world. Breeding Fe-tolerant rice varieties is an excellent approach to address the problem of Fe toxicity. Rice responds differently to Fe toxicity at different stages. Most QTLs associated with Fe toxicity have been identified at the seedling stage, and there are very few studies on Fe toxicity across different stages. In this study, we investigated agro-morphological and physiological traits in response to Fe toxicity in a rice diversity panel at seedling, vegetative, and reproductive stages and applied GWAS to identify QTLs/genes associated with these traits. Among agro-morphological and physiological parameters, leaf bronzing score (LBS) is a key parameter for determining Fe toxicity response at all stages, and SDW could be a promising parameter at the seedling stage. A total of 29 QTLs were identified on ten chromosomes. Among them, three colocalized QTLs were identified on chromosome 5, 6, and 11. Several QTLs identified in this study overlapped with previously identified QTLs from bi-parental QTL mapping and association mapping. Two genes previously reported to be associated with iron homeostasis were identified, i.e., LOC_Os01g72370 (OsIRO2, OsbHLH056) and LOC_Os04g38570 (OsABCB14). In addition, based on gene-based haplotype analysis, LOC_Os05g16670 was identified as a candidate gene for the colocalized QTL on chromosome 5 and LOC_Os11g18320 was identified as a candidate gene for the colocalized QTL on chromosome 11. The QTLs and candidate genes identified in this study could be useful for rice breeding programs for Fe toxicity tolerance.

15.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616233

RESUMO

Coconut (Cocos nucifera L.) is widely recognized as one of nature's most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture.

16.
Sci Rep ; 12(1): 3718, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260602

RESUMO

Luffa is a genus of tropical and subtropical vines belonging to the Cucurbitaceae family. Sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula) are two important species of the genus Luffa and are good sources of human nutrition and herbal medicines. As a vegetable, aromatic luffa is more preferred by consumers than nonaromatic luffa. While the aroma trait is present in the sponge gourd, the trait is not present in the ridge gourd. In this study, we identified Luffa cylindrica's betaine aldehyde dehydrogenase (LcBADH) as a gene associated with aroma in the sponge gourd based on a de novo assembly of public transcriptome data. A single nucleotide polymorphism (SNP: A > G) was identified in exon 5 of LcBADH, causing an amino acid change from tyrosine to cysteine at position 163, which is important for the formation of the substrate binding pocket of the BADH enzyme. Based on the identified SNP, a TaqMan marker, named AroLuff, was developed and validated in 370 F2 progenies of the sponge gourd. The marker genotypes were perfectly associated with the aroma phenotypes, and the segregation ratios supported Mendelian's simple recessive inheritance. In addition, we demonstrated the use of the AroLuff marker in the introgression of LcBADH from the aromatic sponge gourd to the ridge gourd to improve aroma through interspecific hybridization. The marker proved to be useful in improving the aroma characteristics of both Luffa species.


Assuntos
Luffa , Betaína-Aldeído Desidrogenase/genética , Luffa/química , Odorantes , Polimorfismo de Nucleotídeo Único , Pirróis , Verduras
17.
BMC Genomics ; 12: 108, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324149

RESUMO

BACKGROUND: Several tools are available to identify miRNAs from deep-sequencing data, however, only a few of them, like miRDeep, can identify novel miRNAs and are also available as a standalone application. Given the difference between plant and animal miRNAs, particularly in terms of distribution of hairpin length and the nature of complementarity with its duplex partner (or miRNA star), the underlying (statistical) features of miRDeep and other tools, using similar features, are likely to get affected. RESULTS: The potential effects on features, such as minimum free energy, stability of secondary structures, excision length, etc., were examined, and the parameters of those displaying sizable changes were estimated for plant specific miRNAs. We found most of these features acquired a new set of values or distributions for plant specific miRNAs. While the length of conserved positions (nucleus) in mature miRNAs were relatively longer in plants, the difference in distribution of minimum free energy, between real and background hairpins, was marginal. However, the choice of source (species) of background sequences was found to affect both the minimum free energy and miRNA hairpin stability. The new parameters were tested on an Illumina dataset from maize seedlings, and the results were compared with those obtained using default parameters. The newly parameterized model was found to have much improved specificity and sensitivity over its default counterpart. CONCLUSIONS: In summary, the present study reports behavior of few general and tool-specific statistical features for improving the prediction accuracy of plant miRNAs from deep-sequencing data.


Assuntos
Biologia Computacional/métodos , MicroRNAs/química , Plantas/genética , RNA de Plantas/química , Interpretação Estatística de Dados , Conformação de Ácido Nucleico
18.
Plant Biotechnol J ; 9(1): 75-87, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20497370

RESUMO

2-Acetyl-1-pyrroline (2AP), the volatile compound that provides the 'popcorn-like' aroma in a large variety of cereal and food products, is widely found in nature. Deficiency in amino aldehyde dehydrogenase (AMADH) was previously shown to be the likely cause of 2AP biosynthesis in rice (Oryza sativa L.). In this study, the validity of this mechanism was investigated in soybeans (Glycine max L.). An assay of AMADH activity in soybeans revealed that the aromatic soybean, which contains 2AP, also lacked AMADH enzyme activity. Two genes, GmAMADH1 and GmAMADH2, which are homologous to the rice Os2AP gene that encodes AMADH, were characterized. The transcription level of GmAMADH2 was lower in aromatic varieties than in nonaromatic varieties, whereas the expression of GmAMADH1 did not differ. A double nucleotide (TT) deletion was found in exon 10 of GmAMADH2 in all aromatic varieties. This variation caused a frame-shift mutation and a premature stop codon. Suppression of GmAMADH2 by introduction of a GmAMADH2-RNAi construct into the calli of the two nonaromatic wild-type varieties inhibited the synthesis of AMADH and induced the biosynthesis of 2AP. These results suggest that deficiency in the GmAMADH2 product, AMADH, plays a similar role in soybean as in rice, which is to promote 2AP biosynthesis. This phenomenon might be a conserved mechanism among plant species.


Assuntos
Aldeído Desidrogenase/metabolismo , Glycine max/metabolismo , Oryza/genética , Plantas Geneticamente Modificadas/metabolismo , Pirróis/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Poliaminas/metabolismo , Interferência de RNA , Olfato , Glycine max/enzimologia , Glycine max/genética , Ácido gama-Aminobutírico
19.
Theor Appl Genet ; 122(2): 311-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20852988

RESUMO

Vegetable soybean (Glycine max L.) is an important economic and nutritious crop in South and Southeast Asian countries and is increasingly grown in the Western Hemisphere. Aromatic vegetable soybean is a special group of soybean varieties that produce young pods containing a sweet aroma, which is produced mainly by the volatile compound 2-acetyl-1-pyrroline (2AP). Due to the aroma, the aromatic vegetable soybean commands higher market prices and gains wider acceptance from unfamiliar consumers. We have previously reported that the GmAMADH2 gene encodes an AMADH that regulates aroma (2AP) biosynthesis in soybeans (Arikit et al. 2010). A sequence variation involving a 2-bp deletion in exon 10 was found in this gene in all investigated aromatic varieties. In this study, a codominant PCR-based marker for the aroma trait in soybeans was designed based on the 2-bp deletion in GmAMADH2. The marker was verified in five aromatic and five non-aromatic varieties as well as in F(2) soybean population segregating for aroma. The aromatic genotype with the 2-bp deletion was completely associated with the five aromatic soybean varieties as well as the aromatic progeny of the F(2) population with seeds containing 2AP. Similarly, the non-aromatic genotype was associated with the five non-aromatic varieties and non-aromatic progeny. The perfect co-segregation of the marker genotypes and aroma phenotypes confirmed that the marker could be efficiently used for molecular breeding of soybeans for aroma.


Assuntos
Glycine max/genética , Reação em Cadeia da Polimerase/métodos , Produtos Agrícolas/genética , Deleção de Genes , Genes de Plantas , Marcadores Genéticos , Genótipo , Odorantes , Pirróis/química , Pirróis/metabolismo , Glycine max/química , Glycine max/metabolismo
20.
Plants (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802191

RESUMO

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1-6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA