Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393778

RESUMO

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Assuntos
Carbonatos , Ecossistema , Compostos Férricos , Nitratos , Nitratos/metabolismo , Processos Autotróficos , Temperatura , Enxofre/metabolismo , Reatores Biológicos , Desnitrificação , Nitrogênio
2.
Environ Res ; 243: 117891, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072107

RESUMO

Bisphenol A (BPA) and its analogues have prompted rising concerns, especially in terms of human safety, due to its broad use and ubiquity throughout the ecosystem. Numerous studies reported various adverse effects of bisphenols, including developmental disorders, reproductive toxicity, cardiovascular toxicity, and so on. There is increasing evidence that bisphenols can enter the gastrointestinal tract. Consequently, it is important to investigate their effects on the intestine. Several in vivo and in vitro studies have examined the impacts of bisphenols on the intestine. Here, we summarized the literature concerning intestinal toxicity of bisphenols over the past decade and presented compelling evidence of the link between bisphenol exposure and intestinal disorders. Experiment studies revealed that even at low levels, bisphenols could promote intestinal barrier dysregulation, disrupt the composition and diversity of intestinal microbiota as well as induce an immunological response. Moreover, possible underlying mechanisms of these effects were discussed. Because of a lack of empirical data, the potential risk of bisphenol exposure in humans is still unidentified, particularly regarding intestinal disorders. Thus, we propose to conduct additional epidemiological investigations and animal experiments to elucidate the associations between bisphenol exposure and human intestinal health and reveal underlying mechanisms to develop preventative and therapeutic techniques.


Assuntos
Ecossistema , Fenóis , Animais , Humanos , Fenóis/toxicidade , Fenóis/análise , Compostos Benzidrílicos/toxicidade , Intestinos/química
3.
Environ Res ; 242: 117796, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040178

RESUMO

Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-ß-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.


Assuntos
Ácidos Graxos Voláteis , Bactérias Gram-Negativas , Ácidos Graxos Voláteis/metabolismo , Fermentação , Anaerobiose , Bactérias Gram-Negativas/metabolismo , Carbono/metabolismo , Reatores Biológicos , Concentração de Íons de Hidrogênio , Esgotos
4.
Environ Res ; 252(Pt 1): 118859, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574986

RESUMO

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.


Assuntos
Cobre , Paládio , Catálise , Cobre/química , Paládio/química , Poluentes Químicos da Água/química , Adsorção , Halogenação , Técnicas Eletroquímicas/métodos , Eletrodos , Diclofenaco/química
5.
Appl Microbiol Biotechnol ; 108(1): 120, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212963

RESUMO

UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.


Assuntos
Genes Bacterianos , Tianfenicol/análogos & derivados , Águas Residuárias , Antibacterianos/farmacologia , DNA
6.
J Environ Manage ; 354: 120331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368808

RESUMO

Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Humanos , Águas Residuárias , Simulação por Computador , Medição de Risco , Microbiologia da Água
7.
J Environ Sci (China) ; 146: 272-282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969455

RESUMO

Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.


Assuntos
Biomassa , Chlorella , Nitrogênio , Fotobiorreatores , Eliminação de Resíduos Líquidos , Nitrogênio/metabolismo , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eutrofização
8.
J Environ Sci (China) ; 138: 227-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135391

RESUMO

Effective monitoring and management of microbial risk factors in wastewater treatment plants (WWTPs) effluents require a comprehensive investigation of these risks. A global survey on microbial risk factors in WWTP effluents could reveal important insights into their risk features. This study aims to explore the abundance and types of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), the vector of ARG/VFG, and dominant pathogens in global WWTP effluents. We collected 113 metagenomes of WWTP effluents from the Sequence Read Archive of the National Center for Biotechnology Information and characterized the microbial risk factors. Our results showed that multidrug resistance was the dominant ARG type, while offensive virulence factors were the most abundant type of VFGs. The most dominant types of ARGs in the vector of plasmid and phage were both aminoglycoside resistance, which is concerning as aminoglycosides are often a last resort for treating multi-resistant infections. Acinetobacter baumannii was the most dominant pathogen, rather than Escherichia coli, and a weak negative correlation between Escherichia coli and two other dominant pathogens (Acinetobacter baumannii and Bacteroides uniformis) suggests that using Escherichia coli as a biological indicator for all pathogens in WWTP effluents may not be appropriate. The Getah virus was the most dominant virus found in global WWTP effluents. Our study presents a comprehensive global-scale investigation of microbial risk factors in WWTP effluents, providing valuable insights into the potential risks associated with WWTP effluents and contributing to the monitoring and control of these risks.


Assuntos
Águas Residuárias , Purificação da Água , Antibacterianos/farmacologia , Genes Bacterianos , Fatores de Risco , Escherichia coli
9.
Appl Environ Microbiol ; 89(1): e0154722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519886

RESUMO

Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.


Assuntos
Antibacterianos , Cloranfenicol , Farmacorresistência Bacteriana , Oxirredutases , Sphingomonadaceae , Tianfenicol , Humanos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Tianfenicol/metabolismo , Tianfenicol/farmacologia , Farmacorresistência Bacteriana/genética
10.
Eur Radiol ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951854

RESUMO

OBJECTIVES: To systematically investigate and summarize the utility of coronary computed tomographic angiography (CCTA) in the management of chronic total occlusion (CTO)-percutaneous coronary intervention (PCI). METHODS: The authors searched the four databases between 2005 and 2023 for studies investigating the role of CCTA and invasive coronary angiograms (ICA) images when used as the pre-procedural tool for CTO-PCI. Efficacy and safety of CCTA in CTO-PCI treatment as a pre-procedural assessment tool was evaluated. RESULTS: Forty-seven studies were finally chosen for this systematic review. CCTA had a high degree of agreement with ICA when applied for J-CTO scoring system. A J-CTO (Multicenter CTO Registry in Japan) score > 3, together with calcification, occlusion length ≥ 20 mm, blunt stump, and bending > 45° were shared imaging risk factors on both ICA and CCTA for technique failure and guidewire crossing over 30 min. Additionally, negative remodeling and multiple diseased vessel were significant indicators on CCTA. Although patients with pre-procedural CCTA showed a trend of higher success rate and easier guidewire crossing, and CCTA showed a slightly higher predictive accuracy for process success, no significant improvement in post-PCI major adverse cardiac events of using CCTA for assessment has been achieved. CONCLUSIONS: CCTA is a safe and effective pre-operative tool of CTO-PCI. Except for the shared imaging risk factors with ICA for a hard CTO-PCI including calcification, occlusion length ≥ 20 mm, blunt stump, bending > 45°, and J-CTO score > 3, factors like negative remodeling and multiple diseased vessel were also recognized as significant pre-operative assessment indicators on CCTA. CLINICAL RELEVANCE STATEMENT: A pre-procedural assessment based on coronary computed tomographic angiography has the potential to aid in the management of chronic total occlusion percutaneous coronary intervention. KEY POINTS: • A coronary computed tomographic angiography-based pre-procedural assessment can help chronic total occlusion-percutaneous coronary intervention management. • The recognized high-risk features detected via coronary computed tomographic angiography and invasive coronary angiograms are comparable in detecting difficult lesions and chronic total occlusion-percutaneous coronary intervention failure. • Coronary computed tomographic angiography has an additional value to be a safe and effective pre-procedural assessment tool for chronic total occlusion-percutaneous coronary intervention.

11.
Environ Sci Technol ; 57(47): 18668-18679, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36730709

RESUMO

Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Radical Hidroxila/química , Cloretos , Peróxido de Hidrogênio/química , Oxirredução , Antibacterianos , Poluentes Químicos da Água/análise , Eletrodos
12.
Environ Sci Technol ; 57(19): 7490-7502, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37053517

RESUMO

Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 µg L-1 and was completely inhibited once the TCC concentration exceeded 50 µg L-1. Importantly, the accumulation of N2O at 25 µg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.


Assuntos
Anti-Infecciosos , Óxido Nitroso , Desnitrificação , Ecossistema , Biotransformação , Nitrogênio
13.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844031

RESUMO

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Enxofre , Ferro , Fosfatos , Nitrogênio , Processos Autotróficos
14.
Environ Sci Technol ; 57(33): 12137-12152, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578142

RESUMO

Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana/genética , Microplásticos , Plásticos , Transferência Genética Horizontal
15.
Environ Res ; 233: 116084, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217125

RESUMO

The loss and negative impacts of nitrogen from fertilized soils remain a global challenge in agricultural field. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) leaching, together with volatile ammonia loss are the main pathways of nitrogen loss. To improve nitrogen availability, alkaline biochar with improved adsorption capacities is a promising soil amendment. This study was objected to investigate the effects of alkaline biochar (ABC, pH 8.68) on nitrogen mitigation, the effects on nitrogen loss, and the interactions among the mixed soils (biochar, nitrogen fertilizer, and soil) under both pot and field experiments. From pot experiments, ABC addition resulted in the poor reservation of NH4+-N which converted to volatile NH3 under higher alkaline environments, mainly occurring in the first 3 days. But after, NO3--N could be largely retained in surface soil by ABC addition. The reservation of NO3--N by ABC offsets the loss of volatile NH3, and ABC ultimately showed positive reservations of nitrogen with fertilization. In the field experiment, the addition of urea inhibitor (UI) addition could inhibit the volatile NH3 loss caused by ABC mainly in the first week. The long-term operation demonstrated that ABC supported persistent effectiveness in reducing N loss, while UI treatment temporarily delayed the N loss through inhibition of fertilizer hydrolysis. Therefore, the addition of both ABC and UI contributed to reserve soil N in layers (0-50 cm) suitable for crop growth thus improving crops growth.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Nitrogênio/análise , Agricultura
16.
Environ Res ; 231(Pt 1): 116061, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149027

RESUMO

Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.


Assuntos
Reatores Biológicos , Desnitrificação , Sulfetos , Enxofre , Biofilmes
17.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149031

RESUMO

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Assuntos
Desnitrificação , Elétrons , Enxofre , Processos Autotróficos , Sulfetos , Reatores Biológicos , Nitrogênio
18.
Environ Res ; 223: 115409, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746203

RESUMO

An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.


Assuntos
Grafite , Purificação da Água , Águas Residuárias , Membranas Artificiais
19.
J Environ Manage ; 339: 117880, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080098

RESUMO

Biological lability of dissolved organic matter (DOM) is a crucial indicator of carbon cycle and contaminant attenuation in freshwater lakes. In this study, we employed a multi-stage plug-flow bioreactor and spectrofluorometric indices to characterize the seasonal variations in DOM composition and lability across Poyang Lake (PY) and Lake Taihu (TH), two large freshwater lakes in China with distinct hydrological seasonality. Our findings showed that the export of floodplain-derived organics and river-lake interaction led to a remarkable increase in terrestrial aromatic and humic-like DOM with high molecular weights and long turnover times in PY. Consequently, the labile fraction was extremely low (average LDOC% of 3%) during the rising-to-flood season (spring and summer). Conversely, autochthonous production in TH considerably enriched semi-labile (average SDOC% of 26%) and biodegradable DOM (average BDOC% of 34%) during the phytoplankton bloom to post-bloom season (summer and autumn). This was reflected by the accumulation of low-light-absorbing and protein-like components with high biological and fluorescence indices. In the dry and non-bloom season (winter), the better preservation of humic substances maintained the high molecular weight and humic degree of DOM in PY, while the decay of aquatic plants strengthened autochthonous production, resulting in a similar BDOC% of PY samples (23%-34%) to TH samples (18%-33%). We further applied partial least squares regression using DOM optical indices as predictive proxies, which generated a greater prediction strength for BDOC% (R2 = 0.80) compared to SDOC% (R2 = 0.57) and LDOC% (R2 = 0.28). The regression model identified aromaticity (SUVA254) as the most effective and negative predictor and low molecular weight (A250/A365) as the highly and positively influential factor. Our study provides new evidence that the seasonality of DOM lability profiles is regulated by the trade-off between flow-related variation and phytoplankton production, and presents an approach to describe and predict DOM lability across freshwater lakes.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Estações do Ano , Rios , China , Espectrometria de Fluorescência
20.
J Environ Manage ; 331: 117278, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634423

RESUMO

Methane production through anaerobic digestion (AD) of municipal sludge is economic and eco-friendly, which is commonly affected by temperature and pollutants residues. However, little is known about methanogenesis in psychrophilic AD (PAD) with temperature variations that simulating seasonal variations and with antibiotic stress. Here, two groups of AD systems with oxytetracycline (OTC) were operated with temperature maintained at 35 °C and 15 °C or variation to explore the influence to methanogenesis. The acetic acid was noticeably accumulated in OTC groups initially (P < 0.001). Methane production was noticeably inhibited initially in PAD with OTC, but had been stimulated later at 35 °C. The dominant acetoclastic methanogens Methanosaeta gradually decreased to 15.48% and was replaced by methylotrophic Methanomethylovorans (73.43%) in PAD with OTC. Correspondingly, the abundances of functional genes related to methylotrophic methanogenesis were also higher in these groups. Besides, genes involving in methane oxidation had over 50 times higher abundances in PAD with OTC groups in the second phase. Further investigation is essential to understand the main dynamics of methanogenesis in PAD and to clear the related molecular mechanism for future methane production regulation in sludge systems.


Assuntos
Oxitetraciclina , Esgotos , Esgotos/química , Antibacterianos , Anaerobiose , Reatores Biológicos , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA