Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anticancer Drugs ; 33(1): e125-e133, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387594

RESUMO

Currently, there have been few studies on the function and molecular mechanism of miR-141-3p in the development of clear cell renal cell carcinoma (CCRCC). This study aimed to explore the relationship between miR-141-3p and NIMA (never in mitosis, gene A)-related kinase-6 (NEK6) and investigate the role of the interaction in CCRCC cell proliferation, migration, invasion and apoptosis.Starbase database was used to predict the target gene of miR-141-3p in CCRCC and dual-luciferase reporter assay was performed to verify the targeting relationship between miR-141-3p and the target gene. Real-time quantitative PCR was conducted to detect the expression of miR-141-3p and NEK6 mRNA in cells. Western blot was carried out to detect the protein level of NEK6 in cells. Cell Counting Kit-8 assay, transwell assay and wound healing assay were conducted to detect CCRCC cell proliferation, invasion and migration abilities. Flow cytometry was performed to detect CCRCC cell apoptosis. miR-141-3p was markedly lowly expressed, and NEK6 was a target of miR-141-3p and was remarkably highly expressed in CCRCC cells. Over-expressing miR-141-3p could inhibit CCRCC cell proliferation, migration, invasion and promote apoptosis. The inhibitory effect of miR-141-3p over-expression on cell proliferation, migration and invasion was significantly weakened by over-expressing NEK6. miR-141-3p could regulate CCRCC cell proliferation, migration, invasion and apoptosis by targeting NEK6. This study lays the basis for the exploration of the molecular mechanism underlying CCRCC pathogenesis and research on targeted therapies for CCRCC.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , MicroRNAs/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Quinases Relacionadas a NIMA/efeitos dos fármacos
3.
Nephron ; 146(4): 383-392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34903693

RESUMO

BACKGROUNDS: Exosomes from multiple sources function as regulatory factors in progression of various tumors. However, studies on the impact of exosomes from cancer-associated fibroblasts (CAFs) on tumor-cell proliferation, migration, invasion, and cycle regulation in clear-cell renal-cell carcinoma (ccRCC) are still lacking. METHODS: A Western blot assay was performed to test the exosome-related marker protein level in exosomes derived from CAFs and normal fibroblasts (NFs). A confocal microscope was utilized to observe the internalization of CAF- and NF-derived exosomes after coculturing with cancer cells. MTT, EdU, colony formation, and transwell assays were conducted to detect progression of cancer cells incubated with CAF-derived exosomes. A Western blot assay was also conducted to test expression levels of metastasis-associated proteins. Changes in cell apoptosis and cell cycle were measured by flow cytometry. RESULTS: Expression of CAF-derived exosome-related marker proteins was higher than that from NFs. Exosomes derived from CAFs and NFs could enter into cancer cells smoothly and be internalized by cancer cells. After cancer cells were cocultured with CAF-derived exosomes, cell proliferation, migration, and invasion were notably enhanced, and cell apoptosis was reduced. Moreover, expression of fibronectin, N-cadherin, vimentin, MMP9, and MMP2 in cancer cells increased, while E-cadherin was decreased. Besides, the proportion of cancer cells in the S phase increased. CONCLUSION: CAF-derived exosomes are internalized into ccRCC cells and promote the progression of ccRCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Renais , Exossomos , Neoplasias Renais , MicroRNAs , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Renais/patologia , MicroRNAs/metabolismo
4.
Se Pu ; 35(6): 572-577, 2017 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-29048782

RESUMO

Two novel amylose derivatives, namely amylose 2-benzoate-3-(4-methylphenylcarbamate)-6-(3,5-dichlorophenylcarbamate) and amylose 2-benzoate-3-(3,5-dichlorophenylcarbamate)-6-(4-methylphenylcarbamate), were prepared utilizing a serial regioselective process. After coated onto aminopropyl silica gel, they were utilized as chiral stationary phases (CSPs) for high performance liquid chromatography. Investigations indicated that the CSPs exhibited characteristic chiral recognition and their chiral recognition abilities were much higher than those of amylose tris(3,5-dichlorophenylcarbamate) (ADCPC), a homosubstituted derivative. The nature and position of the substituents at 3-, and 6-positions of a glucose unit had great influence on the chiral resolution abilities of the amylose derivatives. Some chiral compounds which were not effectively resolved on the commercial column Chiralpak AD were effectively separated on the new CSPs. Moreover, with all the eight tested racemates resolved, amylose 2-benzoate-3-(4-methylphenylcarbamate)-6-(3,5-dichlorophenylcarbamate) exhibited relatively high chiral recognition and might be a potential useful CSP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA