RESUMO
Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01459-8.
RESUMO
The aim of the present study was to develop Poly (lactic-co-glycolic acid) (PLGA)-based microspheres containing ropivacaine and betamethasone (RPC/BTM PLGA MS) by emulsion-solvent evaporation method. RPC/BTM PLGA MS were characterized by physical properties, such as morphology and particle size, and in vitro drug release. In addition, in vivo pharmacokinetics and pharmacodynamics of RPC/BTM PLGA MS were also investigated. The prepared RPC/BTM PLGA MS was suitable for local injection with a well-dispersed spherical shape, high stability, and high encapsulation efficiency. The mean diameter was 14.8 ± 1.2 µm and the polydispersity index (PDI) was 0.32 ± 0.04. In an in vitro study of drug release, it can be concluded that the RPC/BTM PLGA MS exhibited sustained and long-term release properties for 16 days. Furthermore, the result of an in vivo study indicated that the RPC/BTM PLGA MS had sustained release effect and the pharmacodynamics result showed that preparing RPC/BTM PLGA MS as microsphere preparation could not only extend the drug effect time but also prolong the duration of local anesthetics compared with the common RPC PLGA MS.
Assuntos
Betametasona , Nervo Isquiático , Animais , Camundongos , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RopivacainaRESUMO
Through a series of crystallographic snapshots of water chain-containing aquapores formed from numerous one-dimensionally aligned aquafoldamer molecules 2, we demonstrated here (1) a preferential recognition of the water molecules over methanol molecules by the assembled cavity-containing aquapores with a selectivity factor of at least 17.7, (2) the dynamic nature of the water chains and the aquapores in response to varying external stimuli that exert the most influential impact on the aromatic π-π stacking in the aquapores and (3) the aquapores undergo a significant rearrangement in order to accommodate water, rather than methanol, molecules.