Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886121

RESUMO

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Prunus persica , Percepção de Quorum , Prata , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Prata/química , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Prunus persica/microbiologia , Aizoaceae/química , Fatores de Virulência/metabolismo
2.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276578

RESUMO

Soluble dietary fiber (SDF) benefits human health, and different extraction methods might modify the structure and functions of the SDFs. Radish is rich in dietary fiber. To assess the impact of various extraction techniques on the properties and functions of radish SDF, the SDFs were obtained from white radish pomace using alkaline, ultrasonic-assisted, and fermentation-assisted extraction methods. Analysis was conducted on the structure, physicochemical characteristics, thermal properties, and functional attributes of the SDFs. The study revealed that various extraction techniques can impact the monosaccharides composition and functionality of the SDFs. Compared with the other two extraction methods, the surface structures of SDFs obtained by fermentation-assisted extraction were looser and more porous, and the SDF had better water solubility and water/oil holding capacity. The adsorption capacities of glucose and cholesterol of the SDFs obtained from fermentation-assisted extraction were also improved. Wickerhamomyces anomalus YFJ252 seems the most appropriate strain to ferment white radish pomace to acquire SDF; the water holding, oil holding, glucose absorption capacity, and cholesterol absorption capacity at pH 2 and pH 7 have a 3.06, 1.65, 3.19, 1.27, and 1.83 fold increase than the SDF extracted through alkaline extraction method.


Assuntos
Raphanus , Humanos , Água , Glucose , Colesterol/química , Fibras na Dieta/análise
3.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099732

RESUMO

Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.

4.
Compr Rev Food Sci Food Saf ; 22(2): 1104-1127, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636773

RESUMO

The problems of spoilage, disease, and biofilm caused by bacterial quorum-sensing (QS) systems have posed a significant challenge to the development of the food industry. Quorum-quenching (QQ) enzymes can block QS by hydrolyzing or modifying the signal molecule, making these enzymes promising new candidates for use as antimicrobials. With many recent studies of QQ enzymes and their potential to target foodborne bacteria, an updated and systematic review is necessary. Thus, the goals of this review were to summarize what is known about the effects of bacterial QS on the food industry; discuss the current understanding of the catalytic mechanisms of QQ enzymes, including lactonase, acylase, and oxidoreductase; and describe strategies for the engineering and evolution of QQ enzymes for practical use. In particular, this review focuses on the latest progress in the application of QQ enzymes in the field of food. Finally, the current challenges limiting the systematic application of QQ enzymes in the food industry are discussed to help guide the future development of these important enzymes.


Assuntos
Biofilmes , Percepção de Quorum , Bactérias , Indústria Alimentícia
5.
Compr Rev Food Sci Food Saf ; 22(2): 1257-1284, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710649

RESUMO

Each year, 1.3 billion tons of food is lost due to spoilage or loss in the supply chain, accounting for approximately one third of global food production. This requires a manufacturer to provide accurate information on the shelf life of the food in each stage. Various models for monitoring food quality have been developed and applied to predict food shelf life. This review classified shelf life models and detailed the application background and characteristics of commonly used models to better understand the different uses and aspects of the commonly used models. In particular, the structural framework, application mechanisms, and numerical relationships of commonly used models were elaborated. In addition, the study focused on the application of commonly used models in the food field. Besides predicting the freshness index and remaining shelf life of food, the study addressed aspects such as food classification (maturity and damage) and content prediction. Finally, further promotion of shelf life models in the food field, use of multivariate analysis methods, and development of new models were foreseen. More reliable transportation, processing, and packaging methods could be screened out based on real-time food quality monitoring.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos
6.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912471

RESUMO

Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.

7.
Food Microbiol ; 86: 103356, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703863

RESUMO

Quorum sensing (QS), bacterial cell-to-cell communication, is a gene regulatory mechanism that regulates virulence potential and biofilm formation in many pathogens. Aeromonas sobria, a common aquaculture pathogen, was isolated and identified by our laboratory from the deteriorated turbot, and its potential for virulence factors and biofilm production was regulated by QS system. In view of the interference with QS system, this study was aimed to investigate the effect of methyl anthranilate at sub-Minimum Inhibitory Concentrations (sub-MICs) on QS-regulated phenotypes in A. sobria. The results suggested that 0.5 µL/mL of methyl anthranilate evidently reduced biofilm formation (51.44%), swinging motility (74.86%), swarming motility (71.63%), protease activity (43.08%), and acyl-homoserine lactone (AHL) production. Furthermore, the real-time quantitative PCR (RT-qPCR) and in silico analysis showed that methyl anthranilate might inhibit QS system in A. sobria by interfering with the biosynthesis of AHL, as well as competitively binding with receptor protein. Therefore, our data indicated the feasibility of methyl anthranilate as a promising QS inhibitor and anti-biofilm agent for improving food safety.


Assuntos
Aeromonas/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Aeromonas/genética , Aeromonas/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Fish Shellfish Immunol ; 92: 881-888, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31291603

RESUMO

In this study, we identified a novel antibacterial peptide, RIVELTLPRVSVRL-NH2 (named CF-14), derived from the epidermal mucus of catfish and characterized its antimicrobial activity. Analysis of antimicrobial activity and hemolytic activity of CF-14 revealed broad spectrum, high levels of antimicrobial activity and low toxicity to eukaryotic cells. CF-14 remained stable at pH values ranging from 4.0 to 12.0 and remained bioactive when exposed to high temperature. CD analysis indicated that CF-14 forms a random coil in PBS buffer and an α-helical conformation in the membrane-mimetic 2.5% SDS micelle. Additionally, the antibacterial mechanism of CF-14 against Shewanella putrefaciens was investigated. Membrane permeability experiments confirmed that CF-14 could increase cell wall membrane permeability and cause nucleotide leakage. Moreover, observations performed using scanning electron and confocal microscopy indicated that CF-14 could penetrate into the cell membranes of S. putrefaciens and accumulate in bacterial cells, but did not break down cell membranes. Further, electrophoresis analysis demonstrated that CF-14 possesses DNA-binding affinity. The results provide a substantial basis for future application of CF-14, a novel cell-penetrating peptide (CPP) derived from catfish.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peixes-Gato/genética , Peixes-Gato/imunologia , Doenças dos Peixes/imunologia , Animais , Epiderme/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Muco/química , Shewanella putrefaciens/fisiologia
9.
J Agric Food Chem ; 72(18): 10179-10194, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38685503

RESUMO

During the transportation and storage of food, foodborne spoilage caused by bacterial and biofilm infection is prone to occur, leading to issues such as short shelf life, economic loss, and sensory quality instability. Therefore, the development of novel and efficient antibacterial agents capable of efficiently inhibiting bacteria throughout various stages of food processing, transportation, and storage is strongly recommended by researchers. The emergence of nanozymes is considered to be an effective candidate for inhibiting foodborne bacteria agents in the food industry. As potent antibacterial agents, nanozymes have the advantages of low cost, high stability, strong broad-spectrum antibacterial ability, and biocompatibility. Herein, we aim to summarize the classification status of various nanozymes. Furthermore, the general catalytic bacteriostatic mechanism of nanozymes against intracellular bacteria, planktonic bacteria, and biofilm activities are highlighted, mainly concerning the destruction of cell walls and/or membranes, reactive oxygen species regulation, HOBr/Cl generation, damage of intracellular components, and so forth. In particular, the review focuses on the pivotal role of nanozymes as antibacterial agents and delivery vehicles in the fields of food preservation applications. We look forward to the future prospects, especially in the field of food preservation, to promote broader applications based on antimicrobial nanozymes.


Assuntos
Antibacterianos , Bactérias , Conservação de Alimentos , Nanoestruturas , Conservação de Alimentos/métodos , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Humanos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Microbiologia de Alimentos , Biofilmes/efeitos dos fármacos
10.
Food Chem X ; 23: 101537, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38911470

RESUMO

Edible film is now a trend in the food packaging industry. In this study, edible films were prepared by adding two Bacillus spp. (Bacillus amyloliquefaciens Y11 and Bacillus velezensis Y12) to a cassava starch and carboxymethyl cellulose sodium matrix. The structural, physicochemical, and biological characteristics of the film were analyzed, and its application in salmon preservation was explored. The film had a dense structure and no pores, indicating that its polymeric components were compatible with each other. The addition of Bacillus spp. increased the antioxidant activity of the film and its ability to eliminate hydroxyl radicals (84.57% and 91.86%, respectively). The film also showed good antibacterial activity against several pathogens and underwent complete degradation in natural soil within 12 days. The film significantly reduced the total coliform count of salmon and extended its shelf life by 3 days, demonstrating its value as a food-packaging material.

11.
Int J Biol Macromol ; 258(Pt 2): 129098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161020

RESUMO

Bacterial infection often leads to failed wound healing, causing one-third of death cases globally. However, antibacterial nanomaterials and natural enzymes face limitations including low antibacterial efficiency, lack of catalytic performance, low safety, and instability. Therefore, a new Fe/N-doped chitosan-chelated carbon dot-based nanozyme CS@Fe-N CDs was developed, which showed multiple advantages such as highly efficient antibacterial activity, excellent peroxidase-like activity, high stability, and high biocompatibility, shortening the wound healing time. The ultra-small (6.14 ± 3.38 nm) CS@Fe-N CDs nanozyme accelerated the H2O2 to ·OH conversion, exhibiting excellent antibacterial performance against Staphylococcus aureus. The antibacterial activity was increased by over 2000-fold after catalysis. The CS@Fe-N CDs nanozyme also displayed outstanding peroxidase activity (Vmax/Km = 1.77 × 10-6/s), 8.8-fold higher than horseradish peroxidase. Additionally, the CS@Fe-N CDs nanozyme exhibited high stability at broad pH values (pH 1-12) and temperature ranges (20-90 °C). In vitro evaluation of cell toxicity proved that the CS@Fe-N CDs nanozyme had negligible cytotoxicity. In vivo, wound healing experiments demonstrated that the CS@Fe-N CDs could shorten the healing time of rat wounds by at least 4 days, and even had a better curative effect than penicillin. In conclusion, this therapeutic platform provides an effective antibacterial and biologically safe healing strategy for skin wounds.


Assuntos
Quitosana , Ratos , Animais , Quitosana/farmacologia , Carbono/farmacologia , Peróxido de Hidrogênio/farmacologia , Antibacterianos/farmacologia , Cicatrização , Antioxidantes/farmacologia , Peroxidases/farmacologia , Peroxidase/farmacologia
12.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604429

RESUMO

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Assuntos
Alginatos , Embalagem de Alimentos , Armazenamento de Alimentos , Géis , Alimentos Marinhos , Alimentos Marinhos/análise , Qualidade dos Alimentos , Aprendizado de Máquina , Oncorhynchus mykiss , Géis/química , Alginatos/análise , Antocianinas/análise , Congelamento , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Sistemas Computacionais
13.
Food Chem ; 450: 139230, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626713

RESUMO

At least 10 million tons of seafood products are spoiled or damaged during transportation or storage every year worldwide. Monitoring the freshness of seafood in real time has become especially important. In this study, four machine learning algorithms were used for the first time to develop a multi-objective model that can simultaneously predict the shelf-life of five marine fish species at multiple storage temperatures using 14 features such as species, temperature, total viable count, K-value, total volatile basic­nitrogen, sensory and E-nose-GC-Ms/Ms. as inputs. Among them, the radial basis function model performed the best, and the absolute errors of all test samples were <0.5. With the optimal model as the base layer, a real-time prediction platform was developed to meet the needs of practical applications. This study successfully realized multi-objective real-time prediction with accurate prediction results, providing scientific basis and technical support for food safety and quality.


Assuntos
Peixes , Armazenamento de Alimentos , Aprendizado de Máquina , Alimentos Marinhos , Animais , Alimentos Marinhos/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura , Nariz Eletrônico
14.
Int J Biol Macromol ; 259(Pt 2): 129258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218291

RESUMO

Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.


Assuntos
Antocianinas , Oncorhynchus mykiss , Animais , Antocianinas/química , Polissacarídeos , Oncorhynchus mykiss/microbiologia , Alimentos Marinhos/análise , Embalagem de Alimentos/métodos , Alginatos , Aprendizado de Máquina , Concentração de Íons de Hidrogênio
15.
Int J Biol Macromol ; 273(Pt 2): 133107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897524

RESUMO

The corruption of refrigerated marine fish results in global economic losses exceeding 25 billion euros annually. However, conventional preservatives present challenges, including singular functionality, potential toxicity, and high cost. In response, we developed multifunctional, safe, cost-effective, and environmentally friendly carbon dots derived from radish residues (R-CDs) by using the one-pot hydrothermal method. The surface of R-CDs is enriched with hydroxyl groups, conferring broad-spectrum antioxidant and antibacterial characteristics. R-CDs exhibited a notable 72.92 % inhibition rate on lipid peroxidation, surpassing the effectiveness of vitamin C (46 %). Additionally, R-CDs demonstrated impressive scavenging rates of 93.8 % for 2,2-diphenyl-1-picrylhydrazyl free radicals and 99.36 % for 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid-free radicals. In combating spoilage bacteria such as Aeromonas sobria and Hafnia alvei, R-CDs disrupted cell structures and influenced intracellular substance content. Importantly, co-cultivation with R-CDs showed no significant cytotoxicity. Further incorporating R-CDs into films using starch and chitosan (S/CS/R-CDs films) for efficient and convenient use in salmon fillets preservation. S/CS/R-CDs films effectively inhibited the growth of spoilage bacteria, lipid oxidation, and protein decomposition in salmon fillets, thereby extending shelf life by 4 days. This combination of antioxidant and antibacterial properties in R-CDs, along with the functional films, presents a promising approach for enhancing salmon fillet preservation.


Assuntos
Antibacterianos , Antioxidantes , Carbono , Quitosana , Embalagem de Alimentos , Raphanus , Salmão , Amido , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Embalagem de Alimentos/métodos , Carbono/química , Raphanus/química , Quitosana/química , Quitosana/farmacologia , Amido/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Pontos Quânticos/química , Peroxidação de Lipídeos/efeitos dos fármacos
16.
Carbohydr Polym ; 302: 120382, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604060

RESUMO

Hydrogels have become promising materials for food packaging due to their unique microstructure. However, hydrogel materials suitable for seafood preservation have rarely been reported. In this study, a tamarind polysaccharide-polyvinyl alcohol hydrogel with the ability to maintain seafood freshness was prepared and characterized. The hydrogel possesses quick self-healing, good tissue fitting, and freezing tolerance capability. Moreover, a peeling force of only 0.1 N between the hydrogel and the fillet tissue confirmed the non-stick properties. The FTIR characteristic peak at 1600 cm-1 and 1450 cm-1 proved the ester bond-based chemical cross-linking of the hydrogel. Release profiles at pH 6.0 to 8.0 verified the pH-responsive release of quorum-quenching (QQ) enzymes over 120 h, which enabled the hydrogel to achieve biofilm and protease inhibitory activities. In vivo spoilage tests showed that the shelf life of hydrogel-coated red snapper fillets was extended by >3 days. These results illustrate the potential of the prepared hydrogel as functional packaging for seafood preservation.


Assuntos
Tamarindus , Animais , Tamarindus/química , Percepção de Quorum , Polissacarídeos/farmacologia , Polissacarídeos/química , Álcool de Polivinil/química , Hidrogéis/química , Peixes
17.
Int J Food Microbiol ; 396: 110196, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37031669

RESUMO

Siderophores are important factors in the spoilage process of Pseudomonas fragi, considered to be one of the main spoilage bacterium of tuna, and the secretion of siderophores is regulated by quorum sensing (QS). This study aimed to construct a mutant with the deletion of the siderophore synthetase gene of P. fragi (MS-10), and to explore its effects on the growth, QS, and spoilage potential of P. fragi. The results showed that the deletion of the siderophore biosynthesis gene slowed down the growth rate of the strain. The apoptosis rate increased by 27.7 % compared with that of the wild-type strain at 4 °C for 48 h. Biofilm formation, extracellular protease expression, and signal molecule production were all significantly lower in the mutant strain compared with the wild-type strain. The total viable count and the histamine content showed that the tuna sterile fish block inoculated with the wild-type strain exceeded the acceptable standards by 5 days and was completely spoiled by 7 days, whereas the mutant strain exceeded the acceptable standards by 6 days and was completely spoiled by 9 days. The pH, texture, and other indicators showed that the variation range of the mutant strain was lower than that of the wild-type strain. The deletion of the siderophore biosynthesis gene reduced the spoilage ability of P. fragi. Based on the results, the development of novel preservation agents targeting the control of the siderophore biosynthesis gene could be a new idea for the preservation of aquatic products.


Assuntos
Pseudomonas fragi , Percepção de Quorum , Animais , Percepção de Quorum/genética , Pseudomonas fragi/genética , Sideróforos/metabolismo
18.
ACS Appl Mater Interfaces ; 15(4): 6035-6046, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689615

RESUMO

Hundreds of millions of tons of food resources are wasted annually due to microbial contamination. Effective food packaging can prevent food contamination and wastage. However, traditional food packaging has the problem of low release of bioactive substances. This study aimed to prepare a pH-responsive polysaccharide hydrogel (GDPP) by double cross-linking of ester and hydrogen bonds that could result in a high release of bioactive substances and no residual peeling. The infrared results showed the existence of ester bonds in the hydrogel, and the scanning electron microscopy results showed the porous network structure of the hydrogel. The results of texture profile analysis and self-healing tests showed that GDPP-1 has good mechanical and self-healing properties. Moreover, the ester bond of the hydrogel broke in response to the pH in the environment, improving the swelling and release properties of the hydrogel. The equilibrium swelling ratio of GDPP-1 was greater than 1000%, and the release rate of bioactive substances was more than 80%. Notably, the results of peeling experiments showed that only 0.1 N external force was needed to separate the hydrogel from the salmon, and no residue was observed on the salmon surface. The final freshness test results showed that the hydrogel effectively prolonged the shelf life of refrigerated salmon for 3-6 days. These findings indicated that hydrogels could be used in food packaging to extend the shelf life of refrigerated food. Furthermore, their advantages of low cost and simple preparation can better meet the needs of food industry applications.


Assuntos
Antineoplásicos , Hidrogéis , Hidrogéis/química , Polissacarídeos , Ésteres , Concentração de Íons de Hidrogênio
19.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201066

RESUMO

This review summarizes current studies on fermented vegetables, analyzing the changes in nutritional components during pickling, the health benefits of fermented vegetables, and their safety concerns. Additionally, the review provides an overview of the applications of emergent non-thermal technologies for addressing these safety concerns during the production and processing of fermented vegetables. It was found that vitamin C would commonly be lost, the soluble protein would degrade into free amino acids, new nutrient compositions would be produced, and the flavor correlated with the chemical changes. These changes would be influenced by the variety/location of raw materials, the original bacterial population, starter cultures, fermentation conditions, seasoning additions, and post-fermentation processing. Consuming fermented vegetables benefits human health, including antibacterial effects, regulating intestinal bacterial populations, and promoting health (anti-cancer effects, anti-diabetes effects, and immune regulation). However, fermented vegetables have chemical and biological safety concerns, such as biogenic amines and the formation of nitrites, as well as the existence of pathogenic microorganisms. To reduce hazardous components and control the quality of fermented vegetables, unique starter cultures, high pressure, ultrasound, cold plasma, photodynamic, and other technologies can be used to solve these problems.

20.
Food Funct ; 14(15): 6766-6783, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37436442

RESUMO

Functional ingredients have multiple health benefits for humans, but are sensitive to oxidative degradation during manufacture and storage, and have poor chemical stability and reduced bioaccessibility. Therefore, microcapsules are prepared by encapsulating the active ingredient in a matrix to enhance the stability of the active ingredient. Their use as microcapsule carriers in the food industry is now an effective and promising technology. This paper reviews the preparation of microcapsules based on different principles. It summarizes the protein and polysaccharide bioactive substances commonly used for encapsulation. It also discusses the practice of modifying the wall material by chemical reactions (Maillard reaction) to obtain excellent properties. Finally, the applications of microcapsules in the production of beverages, baked goods, meat, dairy products, probiotic delivery and food preservation are discussed as well as their feasibility as effective protective bioactive substance delivery systems. The microencapsulation process can improve the storability of food products, make bioactive compounds stable over time and apply co-microencapsulation in the formulation of co-effective functional foods, which is a direction for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA